meowsum.git

ref: master

./meow_hash_x64_aesni.h


  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
/* ========================================================================

   Meow - A Fast Non-cryptographic Hash
   (C) Copyright 2018-2019 by Molly Rocket, Inc. (https://mollyrocket.com)
   
   See https://mollyrocket.com/meowhash for details.
   
   ========================================================================
   
   zlib License
   
   (C) Copyright 2018-2019 Molly Rocket, Inc.
   
   This software is provided 'as-is', without any express or implied
   warranty.  In no event will the authors be held liable for any damages
   arising from the use of this software.
   
   Permission is granted to anyone to use this software for any purpose,
   including commercial applications, and to alter it and redistribute it
   freely, subject to the following restrictions:
   
   1. The origin of this software must not be misrepresented; you must not
      claim that you wrote the original software. If you use this software
      in a product, an acknowledgment in the product documentation would be
      appreciated but is not required.
   2. Altered source versions must be plainly marked as such, and must not be
      misrepresented as being the original software.
   3. This notice may not be removed or altered from any source distribution.
   
   ========================================================================
   
   FAQ
   
   Q: What is it?
   
   A: Meow is a 128-bit Level 3 hash taking 128 bytes of seed.  It operates
      at very high speeds on x64 processors, and potentially other processors
      that provide accelerated AES instructions.
      
   Q: What is it GOOD for?
   
   A: Quickly hashing any amount of data for comparison purposes such as
      block deduplication or change detection.  It is fast on all buffer
      sizes, and can generally be used anywhere you need fast Level 3
      hashing without worrying about how big or small the inputs tend to be.
      
      However, substantial speed improvements could be made over Meow
      if you either a) know you are always hashing an exact, small number of bytes,
      or b) can always supply a small number of bytes in a buffer padded to some
      fixed multiple of 16.
      
   Q: What is it BAD for?
   
   A: Anything requiring Level 4 or Level 5 security guarantees (see
      http://nohatcoder.dk/2019-05-19-1.html#level3).  Also, note that
      Meow is a new hash and has not had the extensive community
      cryptanalysis necessary to ensure that it is not breakable down to
      a lower level of hash, so you must do your due diligence in
      deciding when and where to use Meow instead of a slower but
      more extensively studied existing hash.  We have tried to design
      it to provide Level 3 security, but the possibility of the hash
      being broken in the future always exists.
      
   Q: Why is it called the "Meow hash"?
   
   A: It is named after a character in Meow the Infinite
      (https://meowtheinfinite.com)
      
   Q: Who wrote it?
   
   A: The final Meow Hash was created as a collaboration between
      JACOB CHRISTIAN MUNCH-ANDERSEN (https://twitter.com/nohatcoder) and
      CASEY MURATORI (https://caseymuratori.com).  Casey wrote the original
      implementation for use in processing large-footprint assets for the
      game 1935 (https://molly1935.com).  Jacob was the first to analyze
      that implementation and determine the adversarial bit strength, which
      was weaker than they would have liked.
      
      Following that, the two collaborated to figure out how the hash
      could be strengthened without reducing Meow's 16 bytes/cycle
      maximum theoretical throughput.  Jacob created the hash candidates
      and Casey did the performance validation.  After a long and
      exhaustive effort, Jacob found the unaligned aes/add/xor formulation
      that forms the current Meow hash core.
      
      A number of valuable additions to Meow Hash were also contributed
      by other great folks along the way:
      
      JEFF ROBERTS (https://radgametools.com) provided a super slick
      way to handle the residual end-of-buffer bytes that dramatically
      improved Meow's small hash performance.
      
      MARTINS MOZEIKO (https://matrins.ninja) ported Meow to ARM and
      ANSI-C, and added the proper preprocessor dressing for clean
      compilation on a variety of compiler configurations.
      
      FABIAN GIESEN (https://fgiesen.wordpress.com) analyzed many
      performance oddities that came up during development, and
      helped get the benchmarking working properly across a number
      of platforms.
      
      ARAS PRANCKEVICIUS (https://aras-p.info) provided the allocation
      shim for compilation on Mac OS X.
      
   ======================================================================== */

//
// IMPORTANT(casey): We are currently evaluating this hash construction as
// the final one for Meow Hash.  If you find a way to produce collisions
// that should not be possible with a Level 3 hash, find significant performance
// problems, or see any bugs in this version, please be sure to report them
// to the Meow Hash GitHub as soon as possible.  We would like to know as
// much as we can about the robustness and performance before committing to
// it as the final construction.
//

#if !defined(MEOW_HASH_X64_AESNI_H)

#define MEOW_HASH_VERSION 5
#define MEOW_HASH_VERSION_NAME "0.5/calico"

#if !defined(meow_u8)

#if _MSC_VER
#if !defined(__clang__)
#define INSTRUCTION_REORDER_BARRIER _ReadWriteBarrier()
#else
#endif
#include <intrin.h>
#else
#include <x86intrin.h>
#endif

#define meow_u8 char unsigned
#define meow_u64 long long unsigned
#define meow_u128 __m128i

#if __x86_64__ || _M_AMD64
#define meow_umm long long unsigned
#define MeowU64From(A, I) (_mm_extract_epi64((A), (I)))
#elif __i386__  || _M_IX86
#define meow_umm int unsigned
#define MeowU64From(A, I) (*(meow_u64 *)&(A))
#else
#error Cannot determine architecture to use!
#endif

#define MeowU32From(A, I) (_mm_extract_epi32((A), (I)))
#define MeowHashesAreEqual(A, B) (_mm_movemask_epi8(_mm_cmpeq_epi8((A), (B))) == 0xFFFF)

#if !defined INSTRUCTION_REORDER_BARRIER
#define INSTRUCTION_REORDER_BARRIER
#endif

#if !defined MEOW_PAGESIZE
#define MEOW_PAGESIZE 4096
#endif

#if !defined MEOW_PREFETCH
#define MEOW_PREFETCH 4096
#endif

#if !defined MEOW_PREFETCH_LIMIT
#define MEOW_PREFETCH_LIMIT 0x3ff
#endif

#endif

#define prefetcht0(A) _mm_prefetch((char *)(A), _MM_HINT_T0)
#define movdqu(A, B)  A = _mm_loadu_si128((__m128i *)(B))
#define movdqu_mem(A, B)  _mm_storeu_si128((__m128i *)(A), B)
#define movq(A, B) A = _mm_set_epi64x(0, B);
#define aesdec(A, B)  A = _mm_aesdec_si128(A, B)
#define pshufb(A, B)  A = _mm_shuffle_epi8(A, B)
#define pxor(A, B)    A = _mm_xor_si128(A, B)
#define paddq(A, B) A = _mm_add_epi64(A, B)
#define pand(A, B)    A = _mm_and_si128(A, B)
#define palignr(A, B, i) A = _mm_alignr_epi8(A, B, i)
#define pxor_clear(A, B)    A = _mm_setzero_si128(); // NOTE(casey): pxor_clear is a nonsense thing that is only here because compilers don't detect xor(a, a) is clearing a :(

#define MEOW_MIX_REG(r1, r2, r3, r4, r5,  i1, i2, i3, i4) \
aesdec(r1, r2); \
INSTRUCTION_REORDER_BARRIER; \
paddq(r3, i1); \
pxor(r2, i2); \
aesdec(r2, r4); \
INSTRUCTION_REORDER_BARRIER; \
paddq(r5, i3); \
pxor(r4, i4);

#define MEOW_MIX(r1, r2, r3, r4, r5,  ptr) \
MEOW_MIX_REG(r1, r2, r3, r4, r5, _mm_loadu_si128( (__m128i *) ((ptr) + 15) ), _mm_loadu_si128( (__m128i *) ((ptr) + 0)  ), _mm_loadu_si128( (__m128i *) ((ptr) + 1)  ), _mm_loadu_si128( (__m128i *) ((ptr) + 16) ))

#define MEOW_SHUFFLE(r1, r2, r3, r4, r5, r6) \
aesdec(r1, r4); \
paddq(r2, r5); \
pxor(r4, r6); \
aesdec(r4, r2); \
paddq(r5, r6); \
pxor(r2, r3)

#if MEOW_DUMP
struct meow_dump
{
    meow_u128 xmm[8];
    void *Ptr;
    char const *Title;
};
extern "C" meow_dump *MeowDumpTo;
meow_dump *MeowDumpTo;
#define MEOW_DUMP_STATE(T, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, ptr) \
if(MeowDumpTo) \
{ \
    MeowDumpTo->xmm[0] = xmm0; \
    MeowDumpTo->xmm[1] = xmm1; \
    MeowDumpTo->xmm[2] = xmm2; \
    MeowDumpTo->xmm[3] = xmm3; \
    MeowDumpTo->xmm[4] = xmm4; \
    MeowDumpTo->xmm[5] = xmm5; \
    MeowDumpTo->xmm[6] = xmm6; \
    MeowDumpTo->xmm[7] = xmm7; \
    MeowDumpTo->Ptr = ptr; \
    MeowDumpTo->Title = T; \
    ++MeowDumpTo; \
}
#else
#define MEOW_DUMP_STATE(...)
#endif

static meow_u8 MeowShiftAdjust[32] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
static meow_u8 MeowMaskLen[32] = {255,255,255,255, 255,255,255,255, 255,255,255,255, 255,255,255,255, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0};

// NOTE(casey): The default seed is now a "nothing-up-our-sleeves" number for good measure.  You may verify that it is just an encoding of Pi.
static meow_u8 MeowDefaultSeed[128] =
{
    0x32, 0x43, 0xF6, 0xA8, 0x88, 0x5A, 0x30, 0x8D,
	0x31, 0x31, 0x98, 0xA2, 0xE0, 0x37, 0x07, 0x34,
	0x4A, 0x40, 0x93, 0x82, 0x22, 0x99, 0xF3, 0x1D,
	0x00, 0x82, 0xEF, 0xA9, 0x8E, 0xC4, 0xE6, 0xC8,
	0x94, 0x52, 0x82, 0x1E, 0x63, 0x8D, 0x01, 0x37,
	0x7B, 0xE5, 0x46, 0x6C, 0xF3, 0x4E, 0x90, 0xC6,
	0xCC, 0x0A, 0xC2, 0x9B, 0x7C, 0x97, 0xC5, 0x0D,
	0xD3, 0xF8, 0x4D, 0x5B, 0x5B, 0x54, 0x70, 0x91,
	0x79, 0x21, 0x6D, 0x5D, 0x98, 0x97, 0x9F, 0xB1,
	0xBD, 0x13, 0x10, 0xBA, 0x69, 0x8D, 0xFB, 0x5A,
	0xC2, 0xFF, 0xD7, 0x2D, 0xBD, 0x01, 0xAD, 0xFB,
	0x7B, 0x8E, 0x1A, 0xFE, 0xD6, 0xA2, 0x67, 0xE9,
	0x6B, 0xA7, 0xC9, 0x04, 0x5F, 0x12, 0xC7, 0xF9,
	0x92, 0x4A, 0x19, 0x94, 0x7B, 0x39, 0x16, 0xCF,
	0x70, 0x80, 0x1F, 0x2E, 0x28, 0x58, 0xEF, 0xC1,
	0x66, 0x36, 0x92, 0x0D, 0x87, 0x15, 0x74, 0xE6
};

//
// NOTE(casey): Single block version
//

static meow_u128
MeowHash(void *Seed128Init, meow_umm Len, void *SourceInit)
{
    meow_u128 xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; // NOTE(casey): xmm0-xmm7 are the hash accumulation lanes
    meow_u128 xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15; // NOTE(casey): xmm8-xmm15 hold values to be appended (residual, length)
    
    meow_u8 *rax = (meow_u8 *)SourceInit;
    meow_u8 *rcx = (meow_u8 *)Seed128Init;
    
    //
	// NOTE(casey): Seed the eight hash registers
    //
    
    movdqu(xmm0, rcx + 0x00);
    movdqu(xmm1, rcx + 0x10);
    movdqu(xmm2, rcx + 0x20);
    movdqu(xmm3, rcx + 0x30);
    
    movdqu(xmm4, rcx + 0x40);
    movdqu(xmm5, rcx + 0x50);
    movdqu(xmm6, rcx + 0x60);
    movdqu(xmm7, rcx + 0x70);
    
    MEOW_DUMP_STATE("Seed", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0);
    
    //
    // NOTE(casey): Hash all full 256-byte blocks
    //
    
    meow_umm BlockCount = (Len >> 8);
    if(BlockCount > MEOW_PREFETCH_LIMIT)
    {
        // NOTE(casey): For large input, modern Intel x64's can't hit full speed without prefetching, so we use this loop
        while(BlockCount--)
        {
            prefetcht0(rax + MEOW_PREFETCH + 0x00);
            prefetcht0(rax + MEOW_PREFETCH + 0x40);
            prefetcht0(rax + MEOW_PREFETCH + 0x80);
            prefetcht0(rax + MEOW_PREFETCH + 0xc0);
            
            MEOW_MIX(xmm0,xmm4,xmm6,xmm1,xmm2, rax + 0x00);
            MEOW_MIX(xmm1,xmm5,xmm7,xmm2,xmm3, rax + 0x20);
            MEOW_MIX(xmm2,xmm6,xmm0,xmm3,xmm4, rax + 0x40);
            MEOW_MIX(xmm3,xmm7,xmm1,xmm4,xmm5, rax + 0x60);
            MEOW_MIX(xmm4,xmm0,xmm2,xmm5,xmm6, rax + 0x80);
            MEOW_MIX(xmm5,xmm1,xmm3,xmm6,xmm7, rax + 0xa0);
            MEOW_MIX(xmm6,xmm2,xmm4,xmm7,xmm0, rax + 0xc0);
            MEOW_MIX(xmm7,xmm3,xmm5,xmm0,xmm1, rax + 0xe0);
            
            rax += 0x100;
        }
    }
    else
    {
        // NOTE(casey): For small input, modern Intel x64's can't hit full speed _with_ prefetching (because of port pressure), so we use this loop.
        while(BlockCount--)
        {
            MEOW_MIX(xmm0,xmm4,xmm6,xmm1,xmm2, rax + 0x00);
            MEOW_MIX(xmm1,xmm5,xmm7,xmm2,xmm3, rax + 0x20);
            MEOW_MIX(xmm2,xmm6,xmm0,xmm3,xmm4, rax + 0x40);
            MEOW_MIX(xmm3,xmm7,xmm1,xmm4,xmm5, rax + 0x60);
            MEOW_MIX(xmm4,xmm0,xmm2,xmm5,xmm6, rax + 0x80);
            MEOW_MIX(xmm5,xmm1,xmm3,xmm6,xmm7, rax + 0xa0);
            MEOW_MIX(xmm6,xmm2,xmm4,xmm7,xmm0, rax + 0xc0);
            MEOW_MIX(xmm7,xmm3,xmm5,xmm0,xmm1, rax + 0xe0);
            
            rax += 0x100;
        }
    }
    
    MEOW_DUMP_STATE("PostBlocks", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0);
    
    //
    // NOTE(casey): Load any less-than-32-byte residual
    //
    
    pxor_clear(xmm9, xmm9);
    pxor_clear(xmm11, xmm11);
    
    //
    // TODO(casey): I need to put more thought into how the end-of-buffer stuff is actually working out here,
    // because I _think_ it may be possible to remove the first branch (on Len8) and let the mask zero out the
    // result, but it would take a little thought to make sure it couldn't read off the end of the buffer due
    // to the & 0xf on the align computation.
    //
    
    // NOTE(casey): First, we have to load the part that is _not_ 16-byte aligned
    meow_u8 *Last = (meow_u8 *)SourceInit + (Len & ~0xf);
    int unsigned Len8 = (Len & 0xf);
    if(Len8)
    {
        // NOTE(casey): Load the mask early
        movdqu(xmm8, &MeowMaskLen[0x10 - Len8]);
        
        meow_u8 *LastOk = (meow_u8*)((((meow_umm)(((meow_u8 *)SourceInit)+Len - 1)) | (MEOW_PAGESIZE - 1)) - 16);
        int Align = (Last > LastOk) ? ((int)(meow_umm)Last) & 0xf : 0;
        movdqu(xmm10, &MeowShiftAdjust[Align]);
        movdqu(xmm9, Last - Align);
        pshufb(xmm9, xmm10);
        
        // NOTE(jeffr): and off the extra bytes
        pand(xmm9, xmm8);
    }
    
    // NOTE(casey): Next, we have to load the part that _is_ 16-byte aligned
    if(Len & 0x10)
    {
        xmm11 = xmm9;
        movdqu(xmm9, Last - 0x10);
    }
    
    //
    // NOTE(casey): Construct the residual and length injests
    //
    
    xmm8 = xmm9;
    xmm10 = xmm9;
    palignr(xmm8, xmm11, 15);
    palignr(xmm10, xmm11, 1);
    
    // NOTE(casey): We have room for a 128-bit nonce and a 64-bit none here, but
    // the decision was made to leave them zero'd so as not to confuse people
    // about hwo to use them or what security implications they had.
    pxor_clear(xmm12, xmm12);
    pxor_clear(xmm13, xmm13);
    pxor_clear(xmm14, xmm14);
    movq(xmm15, Len);
    palignr(xmm12, xmm15, 15);
    palignr(xmm14, xmm15, 1);
    
    MEOW_DUMP_STATE("Residuals", xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, 0);
    
    // NOTE(casey): To maintain the mix-down pattern, we always Meow Mix the less-than-32-byte residual, even if it was empty
    MEOW_MIX_REG(xmm0, xmm4, xmm6, xmm1, xmm2,  xmm8, xmm9, xmm10, xmm11);
    
    // NOTE(casey): Append the length, to avoid problems with our 32-byte padding
    MEOW_MIX_REG(xmm1, xmm5, xmm7, xmm2, xmm3,  xmm12, xmm13, xmm14, xmm15);
    
    MEOW_DUMP_STATE("PostAppend", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0);
    
    //
    // NOTE(casey): Hash all full 32-byte blocks
    //
    int unsigned LaneCount = (Len >> 5) & 0x7;
    if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm2,xmm6,xmm0,xmm3,xmm4, rax + 0x00); --LaneCount;
    if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm3,xmm7,xmm1,xmm4,xmm5, rax + 0x20); --LaneCount;
    if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm4,xmm0,xmm2,xmm5,xmm6, rax + 0x40); --LaneCount;
    if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm5,xmm1,xmm3,xmm6,xmm7, rax + 0x60); --LaneCount;
    if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm6,xmm2,xmm4,xmm7,xmm0, rax + 0x80); --LaneCount;
    if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm7,xmm3,xmm5,xmm0,xmm1, rax + 0xa0); --LaneCount;
    if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm0,xmm4,xmm6,xmm1,xmm2, rax + 0xc0); --LaneCount;
    
    //
    // NOTE(casey): Mix the eight lanes down to one 128-bit hash
    //
    
    MixDown:
    
    MEOW_DUMP_STATE("PostLanes", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0);
    
    MEOW_SHUFFLE(xmm0, xmm1, xmm2, xmm4, xmm5, xmm6);
    MEOW_SHUFFLE(xmm1, xmm2, xmm3, xmm5, xmm6, xmm7);
    MEOW_SHUFFLE(xmm2, xmm3, xmm4, xmm6, xmm7, xmm0);
    MEOW_SHUFFLE(xmm3, xmm4, xmm5, xmm7, xmm0, xmm1);
    MEOW_SHUFFLE(xmm4, xmm5, xmm6, xmm0, xmm1, xmm2);
    MEOW_SHUFFLE(xmm5, xmm6, xmm7, xmm1, xmm2, xmm3);
    MEOW_SHUFFLE(xmm6, xmm7, xmm0, xmm2, xmm3, xmm4);
    MEOW_SHUFFLE(xmm7, xmm0, xmm1, xmm3, xmm4, xmm5);
    MEOW_SHUFFLE(xmm0, xmm1, xmm2, xmm4, xmm5, xmm6);
    MEOW_SHUFFLE(xmm1, xmm2, xmm3, xmm5, xmm6, xmm7);
    MEOW_SHUFFLE(xmm2, xmm3, xmm4, xmm6, xmm7, xmm0);
    MEOW_SHUFFLE(xmm3, xmm4, xmm5, xmm7, xmm0, xmm1);
    
    MEOW_DUMP_STATE("PostMix", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0);
    
    paddq(xmm0, xmm2);
    paddq(xmm1, xmm3);
    paddq(xmm4, xmm6);
    paddq(xmm5, xmm7);
    pxor(xmm0, xmm1);
    pxor(xmm4, xmm5);
    paddq(xmm0, xmm4);
    
    MEOW_DUMP_STATE("PostFold", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0);
    
    return(xmm0);
}

//
// NOTE(casey): Streaming construction
//

typedef struct meow_state
{
    meow_u128 xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
    meow_u64 TotalLengthInBytes;
    
    int unsigned BufferLen;
    
    meow_u8 Buffer[256];
    meow_u128 Pad[2]; // NOTE(casey): So we know we can over-read Buffer as necessary
} meow_state;

static void
MeowBegin(meow_state *State, void *Seed128)
{
    meow_u8 *rcx = (meow_u8 *)Seed128;
    
    movdqu(State->xmm0, rcx + 0x00);
    movdqu(State->xmm1, rcx + 0x10);
    movdqu(State->xmm2, rcx + 0x20);
    movdqu(State->xmm3, rcx + 0x30);
    movdqu(State->xmm4, rcx + 0x40);
    movdqu(State->xmm5, rcx + 0x50);
    movdqu(State->xmm6, rcx + 0x60);
    movdqu(State->xmm7, rcx + 0x70);
    
    MEOW_DUMP_STATE("Seed", State->xmm0, State->xmm1, State->xmm2, State->xmm3, State->xmm4, State->xmm5, State->xmm6, State->xmm7, 0);
    
    State->BufferLen = 0;
    State->TotalLengthInBytes = 0;
}

static void
MeowAbsorbBlocks(meow_state *State, meow_umm BlockCount, meow_u8 *rax)
{
    meow_u128 xmm0 = State->xmm0;
    meow_u128 xmm1 = State->xmm1;
    meow_u128 xmm2 = State->xmm2;
    meow_u128 xmm3 = State->xmm3;
    meow_u128 xmm4 = State->xmm4;
    meow_u128 xmm5 = State->xmm5;
    meow_u128 xmm6 = State->xmm6;
    meow_u128 xmm7 = State->xmm7;
    
    if(BlockCount > MEOW_PREFETCH_LIMIT)
    {
        while(BlockCount--)
        {
            prefetcht0(rax + MEOW_PREFETCH + 0x00);
            prefetcht0(rax + MEOW_PREFETCH + 0x40);
            prefetcht0(rax + MEOW_PREFETCH + 0x80);
            prefetcht0(rax + MEOW_PREFETCH + 0xc0);
            
            MEOW_MIX(xmm0,xmm4,xmm6,xmm1,xmm2, rax + 0x00);
            MEOW_MIX(xmm1,xmm5,xmm7,xmm2,xmm3, rax + 0x20);
            MEOW_MIX(xmm2,xmm6,xmm0,xmm3,xmm4, rax + 0x40);
            MEOW_MIX(xmm3,xmm7,xmm1,xmm4,xmm5, rax + 0x60);
            MEOW_MIX(xmm4,xmm0,xmm2,xmm5,xmm6, rax + 0x80);
            MEOW_MIX(xmm5,xmm1,xmm3,xmm6,xmm7, rax + 0xa0);
            MEOW_MIX(xmm6,xmm2,xmm4,xmm7,xmm0, rax + 0xc0);
            MEOW_MIX(xmm7,xmm3,xmm5,xmm0,xmm1, rax + 0xe0);
            
            rax += 0x100;
        }
    }
    else
    {
        while(BlockCount--)
        {
            MEOW_MIX(xmm0,xmm4,xmm6,xmm1,xmm2, rax + 0x00);
            MEOW_MIX(xmm1,xmm5,xmm7,xmm2,xmm3, rax + 0x20);
            MEOW_MIX(xmm2,xmm6,xmm0,xmm3,xmm4, rax + 0x40);
            MEOW_MIX(xmm3,xmm7,xmm1,xmm4,xmm5, rax + 0x60);
            MEOW_MIX(xmm4,xmm0,xmm2,xmm5,xmm6, rax + 0x80);
            MEOW_MIX(xmm5,xmm1,xmm3,xmm6,xmm7, rax + 0xa0);
            MEOW_MIX(xmm6,xmm2,xmm4,xmm7,xmm0, rax + 0xc0);
            MEOW_MIX(xmm7,xmm3,xmm5,xmm0,xmm1, rax + 0xe0);
            
            rax += 0x100;
        }
    }
    
    State->xmm0 = xmm0;
    State->xmm1 = xmm1;
    State->xmm2 = xmm2;
    State->xmm3 = xmm3;
    State->xmm4 = xmm4;
    State->xmm5 = xmm5;
    State->xmm6 = xmm6;
    State->xmm7 = xmm7;
}

static void
MeowAbsorb(meow_state *State, meow_umm Len, void *SourceInit)
{
    State->TotalLengthInBytes += Len;
    meow_u8 *Source = (meow_u8 *)SourceInit;
    
    // NOTE(casey): Handle any buffered residual
    if(State->BufferLen)
    {
        int unsigned Fill = (sizeof(State->Buffer) - State->BufferLen);
        if(Fill > Len)
        {
            Fill = (int unsigned)Len;
        }
        
        Len -= Fill;
        while(Fill--)
        {
            State->Buffer[State->BufferLen++] = *Source++;
        }
        
        if(State->BufferLen == sizeof(State->Buffer))
        {
            MeowAbsorbBlocks(State, 1, State->Buffer);
            State->BufferLen = 0;
        }
    }
    
    // NOTE(casey): Handle any full blocks
    meow_u64 BlockCount = (Len >> 8);
    meow_u64 Advance = (BlockCount << 8);
    MeowAbsorbBlocks(State, BlockCount, Source);
    
    Len -= Advance;
    Source += Advance;
    
    // NOTE(casey): Store residual
    while(Len--)
    {
        State->Buffer[State->BufferLen++] = *Source++;
    }
}

static meow_u128
MeowEnd(meow_state *State, meow_u8 *Store128)
{
    meow_umm Len = State->TotalLengthInBytes;
    
    meow_u128 xmm0 = State->xmm0;
    meow_u128 xmm1 = State->xmm1;
    meow_u128 xmm2 = State->xmm2;
    meow_u128 xmm3 = State->xmm3;
    meow_u128 xmm4 = State->xmm4;
    meow_u128 xmm5 = State->xmm5;
    meow_u128 xmm6 = State->xmm6;
    meow_u128 xmm7 = State->xmm7;
    
    meow_u128 xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
    
    meow_u8 *rax = State->Buffer;
    
    pxor_clear(xmm9, xmm9);
    pxor_clear(xmm11, xmm11);
    
    meow_u8 *Last = (meow_u8 *)rax + (Len & 0xf0);
    int unsigned Len8 = (Len & 0xf);
    if(Len8)
    {
        movdqu(xmm8, &MeowMaskLen[0x10 - Len8]);
        movdqu(xmm9, Last);
        pand(xmm9, xmm8);
    }
    
    if(Len & 0x10)
    {
        xmm11 = xmm9;
        movdqu(xmm9, Last - 0x10);
    }
    
    xmm8 = xmm9;
    xmm10 = xmm9;
    palignr(xmm8, xmm11, 15);
    palignr(xmm10, xmm11, 1);
    
    pxor_clear(xmm12, xmm12);
    pxor_clear(xmm13, xmm13);
    pxor_clear(xmm14, xmm14);
    movq(xmm15, Len);
    palignr(xmm12, xmm15, 15);
    palignr(xmm14, xmm15, 1);
    
    MEOW_DUMP_STATE("PostBlocks", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0);
    MEOW_DUMP_STATE("Residuals", xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, 0);
    
    // NOTE(casey): To maintain the mix-down pattern, we always Meow Mix the less-than-32-byte residual, even if it was empty
    MEOW_MIX_REG(xmm0, xmm4, xmm6, xmm1, xmm2,  xmm8, xmm9, xmm10, xmm11);
    
    // NOTE(casey): Append the length, to avoid problems with our 32-byte padding
    MEOW_MIX_REG(xmm1, xmm5, xmm7, xmm2, xmm3,  xmm12, xmm13, xmm14, xmm15);
    
    MEOW_DUMP_STATE("PostAppend", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0);
    
    //
    // NOTE(casey): Hash all full 32-byte blocks
    //
    int unsigned LaneCount = (Len >> 5) & 0x7;
    if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm2,xmm6,xmm0,xmm3,xmm4, rax + 0x00); --LaneCount;
    if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm3,xmm7,xmm1,xmm4,xmm5, rax + 0x20); --LaneCount;
    if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm4,xmm0,xmm2,xmm5,xmm6, rax + 0x40); --LaneCount;
    if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm5,xmm1,xmm3,xmm6,xmm7, rax + 0x60); --LaneCount;
    if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm6,xmm2,xmm4,xmm7,xmm0, rax + 0x80); --LaneCount;
    if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm7,xmm3,xmm5,xmm0,xmm1, rax + 0xa0); --LaneCount;
    if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm0,xmm4,xmm6,xmm1,xmm2, rax + 0xc0); --LaneCount;
    
    //
    // NOTE(casey): Mix the eight lanes down to one 128-bit hash
    //
    
    MixDown:
    
    MEOW_DUMP_STATE("PostLanes", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0);
    
    MEOW_SHUFFLE(xmm0, xmm1, xmm2, xmm4, xmm5, xmm6);
    MEOW_SHUFFLE(xmm1, xmm2, xmm3, xmm5, xmm6, xmm7);
    MEOW_SHUFFLE(xmm2, xmm3, xmm4, xmm6, xmm7, xmm0);
    MEOW_SHUFFLE(xmm3, xmm4, xmm5, xmm7, xmm0, xmm1);
    MEOW_SHUFFLE(xmm4, xmm5, xmm6, xmm0, xmm1, xmm2);
    MEOW_SHUFFLE(xmm5, xmm6, xmm7, xmm1, xmm2, xmm3);
    MEOW_SHUFFLE(xmm6, xmm7, xmm0, xmm2, xmm3, xmm4);
    MEOW_SHUFFLE(xmm7, xmm0, xmm1, xmm3, xmm4, xmm5);
    MEOW_SHUFFLE(xmm0, xmm1, xmm2, xmm4, xmm5, xmm6);
    MEOW_SHUFFLE(xmm1, xmm2, xmm3, xmm5, xmm6, xmm7);
    MEOW_SHUFFLE(xmm2, xmm3, xmm4, xmm6, xmm7, xmm0);
    MEOW_SHUFFLE(xmm3, xmm4, xmm5, xmm7, xmm0, xmm1);
    
    MEOW_DUMP_STATE("PostMix", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0);
    
    if(Store128)
    {
        movdqu_mem(Store128 + 0x00, xmm0);
        movdqu_mem(Store128 + 0x10, xmm1);
        movdqu_mem(Store128 + 0x20, xmm2);
        movdqu_mem(Store128 + 0x30, xmm3);
        movdqu_mem(Store128 + 0x40, xmm4);
        movdqu_mem(Store128 + 0x50, xmm5);
        movdqu_mem(Store128 + 0x60, xmm6);
        movdqu_mem(Store128 + 0x70, xmm7);
    }
    
    paddq(xmm0, xmm2);
    paddq(xmm1, xmm3);
    paddq(xmm4, xmm6);
    paddq(xmm5, xmm7);
    pxor(xmm0, xmm1);
    pxor(xmm4, xmm5);
    paddq(xmm0, xmm4);
    
    MEOW_DUMP_STATE("PostFold", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0);
    
    return(xmm0);
}

#undef INSTRUCTION_REORDER_BARRIER
#undef prefetcht0
#undef movdqu
#undef movdqu_mem
#undef movq
#undef aesdec
#undef pshufb
#undef pxor
#undef paddq
#undef pand
#undef palignr
#undef pxor_clear
#undef MEOW_MIX
#undef MEOW_MIX_REG
#undef MEOW_SHUFFLE
#undef MEOW_DUMP_STATE

//
// NOTE(casey): If you need to create your own seed from non-random data, you can use MeowExpandSeed
// to create a seed which you then store for repeated use.  It is _expensive_ to generate the seed,
// so you do not want to do this every time you hash.  You _only_ want to do it when you actually
// need to create a new seed.
//

static void
MeowExpandSeed(meow_umm InputLen, void *Input, meow_u8 *SeedResult)
{
    meow_state State;
    meow_u64 LengthTab = (meow_u64)InputLen; // NOTE(casey): We need to always injest 8-byte lengths exactly, even on 32-bit builds, to ensure identical results
    meow_umm InjestCount = (256 / InputLen) + 2;
    
    MeowBegin(&State, MeowDefaultSeed);
    MeowAbsorb(&State, sizeof(LengthTab), &LengthTab);
    while(InjestCount--)
    {
        MeowAbsorb(&State, InputLen, Input);
    }
    MeowEnd(&State, SeedResult);
}

#define MEOW_HASH_X64_AESNI_H
#endif