ref: fc5424cb72e477c5f1bbfaeddb5c50b851a965ae
src/resources/lv_img_conv.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
#!/usr/bin/env python3 import argparse import pathlib import sys import decimal from PIL import Image def classify_pixel(value, bits): def round_half_up(v): """python3 implements "propper" "banker's rounding" by rounding to the nearest even number. Javascript rounds to the nearest integer. To have the same output as the original JavaScript implementation add a custom rounding function, which does "school" rounding (to the nearest integer). see: https://stackoverflow.com/questions/43851273/how-to-round-float-0-5-up-to-1-0-while-still-rounding-0-45-to-0-0-as-the-usual """ return int(decimal.Decimal(v).quantize(decimal.Decimal('1'), rounding=decimal.ROUND_HALF_UP)) tmp = 1 << (8 - bits) val = round_half_up(value / tmp) * tmp if val < 0: val = 0 return val def test_classify_pixel(): # test difference between round() and round_half_up() assert classify_pixel(18, 5) == 16 # school rounding 4.5 to 5, but banker's rounding 4.5 to 4 assert classify_pixel(18, 6) == 20 def main(): parser = argparse.ArgumentParser() parser.add_argument("img", help="Path to image to convert to C header file") parser.add_argument("-o", "--output-file", help="output file path (for single-image conversion)", required=True) parser.add_argument("-f", "--force", help="allow overwriting the output file", action="store_true") parser.add_argument("-i", "--image-name", help="name of image structure (not implemented)") parser.add_argument("-c", "--color-format", help="color format of image", default="CF_TRUE_COLOR_ALPHA", choices=[ "CF_ALPHA_1_BIT", "CF_ALPHA_2_BIT", "CF_ALPHA_4_BIT", "CF_ALPHA_8_BIT", "CF_INDEXED_1_BIT", "CF_INDEXED_2_BIT", "CF_INDEXED_4_BIT", "CF_INDEXED_8_BIT", "CF_RAW", "CF_RAW_CHROMA", "CF_RAW_ALPHA", "CF_TRUE_COLOR", "CF_TRUE_COLOR_ALPHA", "CF_TRUE_COLOR_CHROMA", "CF_RGB565A8", ], required=True) parser.add_argument("-t", "--output-format", help="output format of image", default="bin", # default in original is 'c' choices=["c", "bin"]) parser.add_argument("--binary-format", help="binary color format (needed if output-format is binary)", default="ARGB8565_RBSWAP", choices=["ARGB8332", "ARGB8565", "ARGB8565_RBSWAP", "ARGB8888"]) parser.add_argument("-s", "--swap-endian", help="swap endian of image (not implemented)", action="store_true") parser.add_argument("-d", "--dither", help="enable dither (not implemented)", action="store_true") args = parser.parse_args() img_path = pathlib.Path(args.img) out = pathlib.Path(args.output_file) if not img_path.is_file(): print(f"Input file is missing: '{args.img}'") return 1 print(f"Beginning conversion of {args.img}") if out.exists(): if args.force: print(f"overwriting {args.output_file}") else: pritn(f"Error: refusing to overwrite {args.output_file} without -f specified.") return 1 out.touch() # only implemented the bare minimum, everything else is not implemented if args.color_format not in ["CF_INDEXED_1_BIT", "CF_TRUE_COLOR_ALPHA"]: raise NotImplementedError(f"argument --color-format '{args.color_format}' not implemented") if args.output_format != "bin": raise NotImplementedError(f"argument --output-format '{args.output_format}' not implemented") if args.binary_format not in ["ARGB8565_RBSWAP", "ARGB8888"]: raise NotImplementedError(f"argument --binary-format '{args.binary_format}' not implemented") if args.image_name: raise NotImplementedError(f"argument --image-name not implemented") if args.swap_endian: raise NotImplementedError(f"argument --swap-endian not implemented") if args.dither: raise NotImplementedError(f"argument --dither not implemented") # open image using Pillow img = Image.open(img_path) img_height = img.height img_width = img.width if args.color_format == "CF_TRUE_COLOR_ALPHA" and args.binary_format == "ARGB8888": buf = bytearray(img_height*img_width*4) # 4 bytes (32 bit) per pixel for y in range(img_height): for x in range(img_width): i = (y*img_width + x)*4 # buffer-index pixel = img.getpixel((x,y)) r, g, b, a = pixel buf[i + 0] = r buf[i + 1] = g buf[i + 2] = b buf[i + 3] = a elif args.color_format == "CF_TRUE_COLOR_ALPHA" and args.binary_format == "ARGB8565_RBSWAP": buf = bytearray(img_height*img_width*3) # 3 bytes (24 bit) per pixel for y in range(img_height): for x in range(img_width): i = (y*img_width + x)*3 # buffer-index pixel = img.getpixel((x,y)) r_act = classify_pixel(pixel[0], 5) g_act = classify_pixel(pixel[1], 6) b_act = classify_pixel(pixel[2], 5) a = pixel[3] r_act = min(r_act, 0xF8) g_act = min(g_act, 0xFC) b_act = min(b_act, 0xF8) c16 = ((r_act) << 8) | ((g_act) << 3) | ((b_act) >> 3) # RGR565 buf[i + 0] = (c16 >> 8) & 0xFF buf[i + 1] = c16 & 0xFF buf[i + 2] = a elif args.color_format == "CF_INDEXED_1_BIT": # ignore binary format, use color format as binary format w = img_width >> 3 if img_width & 0x07: w+=1 max_p = w * (img_height-1) + ((img_width-1) >> 3) + 8 # +8 for the palette buf = bytearray(max_p+1) for y in range(img_height): for x in range(img_width): c, a = img.getpixel((x,y)) p = w * y + (x >> 3) + 8 # +8 for the palette buf[p] |= (c & 0x1) << (7 - (x & 0x7)) # write palette information, for indexed-1-bit we need palette with two values # write 8 palette bytes buf[0] = 0 buf[1] = 0 buf[2] = 0 buf[3] = 0 # Normally there is much math behind this, but for the current use case this is close enough # only needs to be more complicated if we have more than 2 colors in the palette buf[4] = 255 buf[5] = 255 buf[6] = 255 buf[7] = 255 else: # raise just to be sure raise NotImplementedError(f"args.color_format '{args.color_format}' with args.binary_format '{args.binary_format}' not implemented") # write header match args.color_format: case "CF_TRUE_COLOR_ALPHA": lv_cf = 5 case "CF_INDEXED_1_BIT": lv_cf = 7 case _: # raise just to be sure raise NotImplementedError(f"args.color_format '{args.color_format}' not implemented") header_32bit = lv_cf | (img_width << 10) | (img_height << 21) buf_out = bytearray(4 + len(buf)) buf_out[0] = header_32bit & 0xFF buf_out[1] = (header_32bit & 0xFF00) >> 8 buf_out[2] = (header_32bit & 0xFF0000) >> 16 buf_out[3] = (header_32bit & 0xFF000000) >> 24 buf_out[4:] = buf # write byte buffer to file with open(out, "wb") as f: f.write(buf_out) return 0 if __name__ == '__main__': if "--test" in sys.argv: # run small set of tests and exit print("running tests") test_classify_pixel() print("success!") sys.exit(0) # run normal program sys.exit(main()) |