ref: e5b73212f6addcfdb5e306df63d7135e543c4f8d
tools/rle_encode.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
#!/usr/bin/env python3 # SPDX-License-Identifier: LGPL-3.0-or-later # Copyright (C) 2020 Daniel Thompson import argparse import sys import os.path from PIL import Image def clut8_rgb888(i): """Reference CLUT for wasp-os. Technically speaking this is not a CLUT because the we lookup the colours algorithmically to avoid the cost of a genuine CLUT. The palette is designed to be fairly easy to generate algorithmically. The palette includes all 216 web-safe colours together 4 grays and 36 additional colours that target "gaps" at the brighter end of the web safe set. There are 11 greys (plus black and white) although two are fairly close together. :param int i: Index (from 0..255 inclusive) into the CLUT :return: 24-bit colour in RGB888 format """ if i < 216: rgb888 = ( i % 6) * 0x33 rg = i // 6 rgb888 += (rg % 6) * 0x3300 rgb888 += (rg // 6) * 0x330000 elif i < 252: i -= 216 rgb888 = 0x7f + (( i % 3) * 0x33) rg = i // 3 rgb888 += 0x4c00 + ((rg % 4) * 0x3300) rgb888 += 0x7f0000 + ((rg // 4) * 0x330000) else: i -= 252 rgb888 = 0x2c2c2c + (0x101010 * i) return rgb888 def clut8_rgb565(i): """RBG565 CLUT for wasp-os. This CLUT implements the same palette as :py:meth:`clut8_888` but outputs RGB565 pixels. .. note:: This function is unused within this file but needs to be maintained alongside the reference clut so it is reproduced here. :param int i: Index (from 0..255 inclusive) into the CLUT :return: 16-bit colour in RGB565 format """ if i < 216: rgb565 = (( i % 6) * 0x33) >> 3 rg = i // 6 rgb565 += ((rg % 6) * (0x33 << 3)) & 0x07e0 rgb565 += ((rg // 6) * (0x33 << 8)) & 0xf800 elif i < 252: i -= 216 rgb565 = (0x7f + (( i % 3) * 0x33)) >> 3 rg = i // 3 rgb565 += ((0x4c << 3) + ((rg % 4) * (0x33 << 3))) & 0x07e0 rgb565 += ((0x7f << 8) + ((rg // 4) * (0x33 << 8))) & 0xf800 else: i -= 252 gr6 = (0x2c + (0x10 * i)) >> 2 gr5 = gr6 >> 1 rgb565 = (gr5 << 11) + (gr6 << 5) + gr5 return rgb565 class ReverseCLUT: def __init__(self, clut): l = [] for i in range(256): l.append(clut(i)) self.clut = tuple(l) self.lookup = {} def __call__(self, rgb888): """Compare rgb888 to every element of the CLUT and pick the closest match. """ if rgb888 in self.lookup: return self.lookup[rgb888] best = 200000 index = -1 clut = self.clut r = rgb888 >> 16 g = (rgb888 >> 8) & 0xff b = rgb888 & 0xff for i in range(256): candidate = clut[i] rd = r - (candidate >> 16) gd = g - ((candidate >> 8) & 0xff) bd = b - (candidate & 0xff) # This is the Euclidean distance (squared) distance = rd * rd + gd * gd + bd * bd if distance < best: best = distance index = i self.lookup[rgb888] = index #print(f'# #{rgb888:06x} -> #{clut8_rgb888(index):06x}') return index def varname(p): return os.path.basename(os.path.splitext(p)[0]) def encode(im): pixels = im.load() rle = [] rl = 0 px = pixels[0, 0] def encode_pixel(px, rl): while rl > 255: rle.append(255) rle.append(0) rl -= 255 rle.append(rl) for y in range(im.height): for x in range(im.width): newpx = pixels[x, y] if newpx == px: rl += 1 assert(rl < (1 << 21)) continue # Code the previous run encode_pixel(px, rl) # Start a new run rl = 1 px = newpx # Handle the final run encode_pixel(px, rl) return (im.width, im.height, bytes(rle)) def encode_2bit(im): """2-bit palette based RLE encoder. This encoder has a reprogrammable 2-bit palette. This allows it to encode arbitrary images with a full 8-bit depth but the 2-byte overhead each time a new colour is introduced means it is not efficient unless the image is carefully constructed to keep a good locality of reference for the three non-background colours. The encoding competes well with the 1-bit encoder for small monochrome images but once run-lengths longer than 62 start to become frequent then this encoding is about 30% larger than a 1-bit encoding. """ pixels = im.load() assert(im.width <= 255) assert(im.height <= 255) full_palette = ReverseCLUT(clut8_rgb888) rle = [] rl = 0 px = pixels[0, 0] # black, grey25, grey50, white palette = [0, 254, 219, 215] next_color = 1 def encode_pixel(px, rl): nonlocal next_color px = full_palette((px[0] << 16) + (px[1] << 8) + px[2]) if px not in palette: rle.append(next_color << 6) rle.append(px) palette[next_color] = px next_color += 1 if next_color >= len(palette): next_color = 1 px = palette.index(px) if rl >= 63: rle.append((px << 6) + 63) rl -= 63 while rl >= 255: rle.append(255) rl -= 255 rle.append(rl) else: rle.append((px << 6) + rl) # Issue the descriptor rle.append(2) rle.append(im.width) rle.append(im.height) for y in range(im.height): for x in range(im.width): newpx = pixels[x, y] if newpx == px: rl += 1 assert(rl < (1 << 21)) continue # Code the previous run encode_pixel(px, rl) # Start a new run rl = 1 px = newpx # Handle the final run encode_pixel(px, rl) return bytes(rle) def encode_8bit(im): """Experimental 8-bit RLE encoder. For monochrome images this is about 3x less efficient than the 1-bit encoder. This encoder is not currently used anywhere in wasp-os and currently there is no decoder either (so don't assume this code actually works). """ pixels = im.load() rle = [] rl = 0 px = pixels[0, 0] def encode_pixel(px, rl): px = (px[0] & 0xe0) | ((px[1] & 0xe0) >> 3) | ((px[2] & 0xc0) >> 6) rle.append(px) if rl > 0: rle.append(px) rl -= 2 if rl > (1 << 14): rle.append(0x80 | ((rl >> 14) & 0x7f)) if rl > (1 << 7): rle.append(0x80 | ((rl >> 7) & 0x7f)) if rl >= 0: rle.append( rl & 0x7f ) for y in range(im.height): for x in range(im.width): newpx = pixels[x, y] if newpx == px: rl += 1 assert(rl < (1 << 21)) continue # Code the previous run encode_pixel(px, rl) # Start a new run rl = 1 px = newpx # Handle the final run encode_pixel(px, rl) return (im.width, im.height, bytes(rle)) def render_c(image, fname, indent, depth): extra_indent = ' ' * indent if len(image) == 3: print(f'{extra_indent}// {depth}-bit RLE, generated from {fname}, ' f'{len(image[2])} bytes') (x, y, pixels) = image else: print(f'{extra_indent}// {depth}-bit RLE, generated from {fname}, ' f'{len(image)} bytes') pixels = image print(f'{extra_indent}static const uint8_t {varname(fname)}[] = {{') print(f'{extra_indent} ', end='') i = 0 for rl in pixels: print(f' {hex(rl)},', end='') i += 1 if i == 12: print(f'\n{extra_indent} ', end='') i = 0 print('\n};') def render_py(image, fname, indent, depth): extra_indent = ' ' * indent if len(image) == 3: print(f'{extra_indent}# {depth}-bit RLE, generated from {fname}, ' f'{len(image[2])} bytes') (x, y, pixels) = image print(f'{extra_indent}{varname(fname)} = (') print(f'{extra_indent} {x}, {y},') else: print(f'{extra_indent}# {depth}-bit RLE, generated from {fname}, ' f'{len(image)} bytes') pixels = image[3:] print(f'{extra_indent}{varname(fname)} = (') print(f'{extra_indent} {image[0:1]}') print(f'{extra_indent} {image[1:3]}') # Split the bytestring to ensure each line is short enough to # be absorbed on the target if needed. for i in range(0, len(pixels), 16): print(f'{extra_indent} {pixels[i:i+16]}') print(f'{extra_indent})') def decode_to_ascii(image): (sx, sy, rle) = image data = bytearray(2*sx) dp = 0 black = ord('#') white = ord(' ') color = black for rl in rle: while rl: data[dp] = color data[dp+1] = color dp += 2 rl -= 1 if dp >= (2*sx): print(data.decode('utf-8')) dp = 0 if color == black: color = white else: color = black # Check the image is the correct length assert(dp == 0) parser = argparse.ArgumentParser(description='RLE encoder tool.') parser.add_argument('files', nargs='+', help='files to be encoded') parser.add_argument('--ascii', action='store_true', help='Run the resulting image(s) through an ascii art decoder') parser.add_argument('--c', action='store_true', help='Render the output as C instead of python') parser.add_argument('--indent', default=0, type=int, help='Add extra indentation in the generated code') parser.add_argument('--2bit', action='store_true', dest='twobit', help='Generate 2-bit image') parser.add_argument('--8bit', action='store_true', dest='eightbit', help='Generate 8-bit image') args = parser.parse_args() if args.eightbit: encoder = encode_8bit depth = 8 elif args.twobit: encoder = encode_2bit depth = 2 else: encoder = encode depth =1 for fname in args.files: image = encoder(Image.open(fname)) if args.c: render_c(image, fname, args.indent, depth) else: render_py(image, fname, args.indent, depth) if args.ascii: print() decode_to_ascii(image) |