ref: 0ce98c7ac7ba66acaf504be9bb042796e12f2733
src/drivers/Bma421.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
#include <libraries/delay/nrf_delay.h> #include <libraries/log/nrf_log.h> #include "Bma421.h" #include "TwiMaster.h" #include <drivers/Bma421_C/bma423.h> using namespace Pinetime::Drivers; namespace { int8_t user_i2c_read(uint8_t reg_addr, uint8_t* reg_data, uint32_t length, void* intf_ptr) { auto bma421 = static_cast<Bma421*>(intf_ptr); bma421->Read(reg_addr, reg_data, length); return 0; } int8_t user_i2c_write(uint8_t reg_addr, const uint8_t* reg_data, uint32_t length, void* intf_ptr) { auto bma421 = static_cast<Bma421*>(intf_ptr); bma421->Write(reg_addr, reg_data, length); return 0; } void user_delay(uint32_t period_us, void* intf_ptr) { nrf_delay_us(period_us); } } Bma421::Bma421(TwiMaster& twiMaster, uint8_t twiAddress) : twiMaster {twiMaster}, deviceAddress {twiAddress} { bma.intf = BMA4_I2C_INTF; bma.bus_read = user_i2c_read; bma.bus_write = user_i2c_write; bma.variant = BMA42X_VARIANT; bma.intf_ptr = this; bma.delay_us = user_delay; bma.read_write_len = 16; } void Bma421::Init() { if (not isResetOk) return; // Call SoftReset (and reset TWI device) first! auto ret = bma423_init(&bma); if (ret != BMA4_OK) return; ret = bma423_write_config_file(&bma); if (ret != BMA4_OK) return; ret = bma4_set_interrupt_mode(BMA4_LATCH_MODE, &bma); if (ret != BMA4_OK) return; ret = bma423_feature_enable(BMA423_STEP_CNTR, 1, &bma); if (ret != BMA4_OK) return; ret = bma423_step_detector_enable(0, &bma); if (ret != BMA4_OK) return; ret = bma4_set_accel_enable(1, &bma); if (ret != BMA4_OK) return; struct bma4_accel_config accel_conf; accel_conf.odr = BMA4_OUTPUT_DATA_RATE_100HZ; accel_conf.range = BMA4_ACCEL_RANGE_2G; accel_conf.bandwidth = BMA4_ACCEL_NORMAL_AVG4; accel_conf.perf_mode = BMA4_CIC_AVG_MODE; ret = bma4_set_accel_config(&accel_conf, &bma); if (ret != BMA4_OK) return; isOk = true; } void Bma421::Reset() { uint8_t data = 0xb6; twiMaster.Write(deviceAddress, 0x7E, &data, 1); } void Bma421::Read(uint8_t registerAddress, uint8_t* buffer, size_t size) { twiMaster.Read(deviceAddress, registerAddress, buffer, size); } void Bma421::Write(uint8_t registerAddress, const uint8_t* data, size_t size) { twiMaster.Write(deviceAddress, registerAddress, data, size); } Bma421::Values Bma421::Process() { if (not isOk) return {}; struct bma4_accel data; bma4_read_accel_xyz(&data, &bma); uint32_t steps = 0; bma423_step_counter_output(&steps, &bma); int32_t temperature; bma4_get_temperature(&temperature, BMA4_DEG, &bma); temperature = temperature / 1000; uint8_t activity = 0; bma423_activity_output(&activity, &bma); // X and Y axis are swapped because of the way the sensor is mounted in the PineTime return {steps, data.y, data.x, data.z}; } bool Bma421::IsOk() const { return isOk; } void Bma421::ResetStepCounter() { bma423_reset_step_counter(&bma); } void Bma421::SoftReset() { auto ret = bma4_soft_reset(&bma); if (ret == BMA4_OK) { isResetOk = true; nrf_delay_ms(1); } } |