InfiniTime.git

ref: 0.12.0

src/libs/mynewt-nimble/nimble/drivers/nrf5340/src/ble_phy.c


   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

#include <stdint.h>
#include <string.h>
#include <assert.h>
#include <syscfg/syscfg.h>
#include <os/os.h>
#include <nimble/ble.h>
#include <nimble/nimble_opt.h>
#include <nimble/nimble_npl.h>
#include <controller/ble_phy.h>

#include <ble/xcvr.h>
#include <controller/ble_phy_trace.h>
#include <controller/ble_ll.h>
#include <mcu/nrf5340_net_clock.h>
#include <mcu/cmsis_nvic.h>

/*
 * NOTE: This code uses 0-5 DPPI channels so care should be taken when using
 * DPPI somewhere else.
 * TODO maybe we could reduce number of used channels if we reuse same channel
 * for mutually exclusive events but for now make it simpler to debug.
 */

#define DPPI_CH_TIMER0_EVENTS_COMPARE_0         0
#define DPPI_CH_TIMER0_EVENTS_COMPARE_3         1
#define DPPI_CH_RADIO_EVENTS_END                2
#define DPPI_CH_RADIO_EVENTS_BCMATCH            3
#define DPPI_CH_RADIO_EVENTS_ADDRESS            4
#define DPPI_CH_RTC0_EVENTS_COMPARE_0           5

#define DPPI_CH_ENABLE_ALL (DPPIC_CHEN_CH0_Msk | DPPIC_CHEN_CH1_Msk | DPPIC_CHEN_CH2_Msk | \
                            DPPIC_CHEN_CH3_Msk |  DPPIC_CHEN_CH4_Msk | DPPIC_CHEN_CH5_Msk)

#define DPPI_PUBLISH_TIMER0_EVENTS_COMPARE_0    ((DPPI_CH_TIMER0_EVENTS_COMPARE_0 << TIMER_PUBLISH_COMPARE_CHIDX_Pos) | \
                                                 (TIMER_PUBLISH_COMPARE_EN_Enabled << TIMER_PUBLISH_COMPARE_EN_Pos))
#define DPPI_PUBLISH_TIMER0_EVENTS_COMPARE_3    ((DPPI_CH_TIMER0_EVENTS_COMPARE_3 << TIMER_PUBLISH_COMPARE_CHIDX_Pos) | \
                                                 (TIMER_PUBLISH_COMPARE_EN_Enabled << TIMER_PUBLISH_COMPARE_EN_Pos))
#define DPPI_PUBLISH_RADIO_EVENTS_END           ((DPPI_CH_RADIO_EVENTS_END << RADIO_PUBLISH_END_CHIDX_Pos) | \
                                                 (RADIO_PUBLISH_END_EN_Enabled << RADIO_PUBLISH_END_EN_Pos))
#define DPPI_PUBLISH_RADIO_EVENTS_BCMATCH       ((DPPI_CH_RADIO_EVENTS_BCMATCH << RADIO_PUBLISH_BCMATCH_CHIDX_Pos) | \
                                                 (RADIO_PUBLISH_BCMATCH_EN_Enabled << RADIO_PUBLISH_BCMATCH_EN_Pos))
#define DPPI_PUBLISH_RADIO_EVENTS_ADDRESS       ((DPPI_CH_RADIO_EVENTS_ADDRESS << RADIO_PUBLISH_ADDRESS_CHIDX_Pos) | \
                                                 (RADIO_PUBLISH_ADDRESS_EN_Enabled << RADIO_PUBLISH_ADDRESS_EN_Pos))
#define DPPI_PUBLISH_RTC0_EVENTS_COMPARE_0      ((DPPI_CH_RTC0_EVENTS_COMPARE_0 << RTC_PUBLISH_COMPARE_CHIDX_Pos) | \
                                                 (RTC_PUBLISH_COMPARE_EN_Enabled << RTC_PUBLISH_COMPARE_EN_Pos))

#define DPPI_SUBSCRIBE_TIMER0_TASKS_START(_enable)     ((DPPI_CH_RTC0_EVENTS_COMPARE_0 << TIMER_SUBSCRIBE_START_CHIDX_Pos) | \
                                                        ((_enable) << TIMER_SUBSCRIBE_START_EN_Pos))
#define DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE1(_enable)  ((DPPI_CH_RADIO_EVENTS_ADDRESS << TIMER_SUBSCRIBE_CAPTURE_CHIDX_Pos) | \
                                                        ((_enable) << TIMER_SUBSCRIBE_CAPTURE_EN_Pos))
#define DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE2(_enable)  ((DPPI_CH_RADIO_EVENTS_END << TIMER_SUBSCRIBE_CAPTURE_CHIDX_Pos) | \
                                                        ((_enable) << TIMER_SUBSCRIBE_CAPTURE_EN_Pos))
#define DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE3(_enable)  ((DPPI_CH_RADIO_EVENTS_ADDRESS << TIMER_SUBSCRIBE_CAPTURE_CHIDX_Pos) | \
                                                        ((_enable) << TIMER_SUBSCRIBE_CAPTURE_EN_Pos))
#define DPPI_SUBSCRIBE_RADIO_TASKS_DISABLE(_enable)    ((DPPI_CH_TIMER0_EVENTS_COMPARE_3 << RADIO_SUBSCRIBE_DISABLE_CHIDX_Pos) | \
                                                        ((_enable) << RADIO_SUBSCRIBE_DISABLE_EN_Pos))
#define DPPI_SUBSCRIBE_RADIO_TASKS_RXEN(_enable)       ((DPPI_CH_TIMER0_EVENTS_COMPARE_0 << RADIO_SUBSCRIBE_RXEN_CHIDX_Pos) | \
                                                        ((_enable) << RADIO_SUBSCRIBE_RXEN_EN_Pos))
#define DPPI_SUBSCRIBE_RADIO_TASKS_TXEN(_enable)       ((DPPI_CH_TIMER0_EVENTS_COMPARE_0 << RADIO_SUBSCRIBE_TXEN_CHIDX_Pos) | \
                                                        ((_enable) << RADIO_SUBSCRIBE_TXEN_EN_Pos))
#define DPPI_SUBSCRIBE_AAR_TASKS_START(_enable)        ((DPPI_CH_RADIO_EVENTS_BCMATCH << AAR_SUBSCRIBE_START_CHIDX_Pos) | \
                                                        ((_enable) << AAR_SUBSCRIBE_START_EN_Pos))
#define DPPI_SUBSCRIBE_CCM_TASKS_CRYPT(_enable)        ((DPPI_CH_RADIO_EVENTS_ADDRESS << CCM_SUBSCRIBE_CRYPT_CHIDX_Pos) | \
                                                        ((_enable) << CCM_SUBSCRIBE_CRYPT_EN_Pos))

extern uint8_t g_nrf_num_irks;
extern uint32_t g_nrf_irk_list[];

/* To disable all radio interrupts */
#define NRF_RADIO_IRQ_MASK_ALL (0x34FF)

/*
 * We configure the nrf with a 1 byte S0 field, 8 bit length field, and
 * zero bit S1 field. The preamble is 8 bits long.
 */
#define NRF_LFLEN_BITS      (8)
#define NRF_S0LEN           (1)
#define NRF_S1LEN_BITS      (0)
#define NRF_CILEN_BITS      (2)
#define NRF_TERMLEN_BITS    (3)

/* Maximum length of frames */
#define NRF_MAXLEN          (255)
#define NRF_BALEN           (3)     /* For base address of 3 bytes */

/* NRF_RADIO_NS->PCNF0 configuration values */
#define NRF_PCNF0           (NRF_LFLEN_BITS << RADIO_PCNF0_LFLEN_Pos) | \
                            (RADIO_PCNF0_S1INCL_Msk) | \
                            (NRF_S0LEN << RADIO_PCNF0_S0LEN_Pos) | \
                            (NRF_S1LEN_BITS << RADIO_PCNF0_S1LEN_Pos)
#define NRF_PCNF0_1M        (NRF_PCNF0) | \
                            (RADIO_PCNF0_PLEN_8bit << RADIO_PCNF0_PLEN_Pos)
#define NRF_PCNF0_2M        (NRF_PCNF0) | \
                            (RADIO_PCNF0_PLEN_16bit << RADIO_PCNF0_PLEN_Pos)
#define NRF_PCNF0_CODED     (NRF_PCNF0) | \
                            (RADIO_PCNF0_PLEN_LongRange << RADIO_PCNF0_PLEN_Pos) | \
                            (NRF_CILEN_BITS << RADIO_PCNF0_CILEN_Pos) | \
                            (NRF_TERMLEN_BITS << RADIO_PCNF0_TERMLEN_Pos)

/* BLE PHY data structure */
struct ble_phy_obj {
    uint8_t phy_stats_initialized;
    int8_t phy_txpwr_dbm;
    uint8_t phy_chan;
    uint8_t phy_state;
    uint8_t phy_transition;
    uint8_t phy_transition_late;
    uint8_t phy_rx_started;
    uint8_t phy_encrypted;
    uint8_t phy_privacy;
    uint8_t phy_tx_pyld_len;
    uint8_t phy_cur_phy_mode;
    uint8_t phy_tx_phy_mode;
    uint8_t phy_rx_phy_mode;
    uint8_t phy_bcc_offset;
    int8_t rx_pwr_compensation;
    uint32_t phy_aar_scratch;
    uint32_t phy_access_address;
    struct ble_mbuf_hdr rxhdr;
    void *txend_arg;
    ble_phy_tx_end_func txend_cb;
    uint32_t phy_start_cputime;
};
struct ble_phy_obj g_ble_phy_data;

/* XXX: if 27 byte packets desired we can make this smaller */
/* Global transmit/receive buffer */
static uint32_t g_ble_phy_tx_buf[(BLE_PHY_MAX_PDU_LEN + 3) / 4];
static uint32_t g_ble_phy_rx_buf[(BLE_PHY_MAX_PDU_LEN + 3) / 4];

#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
/* Make sure word-aligned for faster copies */
static uint32_t g_ble_phy_enc_buf[(BLE_PHY_MAX_PDU_LEN + 3) / 4];
#endif

/* RF center frequency for each channel index (offset from 2400 MHz) */
static const uint8_t g_ble_phy_chan_freq[BLE_PHY_NUM_CHANS] = {
    4,  6,  8, 10, 12, 14, 16, 18, 20, 22, /* 0-9 */
    24, 28, 30, 32, 34, 36, 38, 40, 42, 44, /* 10-19 */
    46, 48, 50, 52, 54, 56, 58, 60, 62, 64, /* 20-29 */
    66, 68, 70, 72, 74, 76, 78,  2, 26, 80, /* 30-39 */
};

#if (BLE_LL_BT5_PHY_SUPPORTED == 1)
/* packet start offsets (in usecs) */
static const uint16_t g_ble_phy_mode_pkt_start_off[BLE_PHY_NUM_MODE] = {
    [BLE_PHY_MODE_1M] = 40,
    [BLE_PHY_MODE_2M] = 24,
    [BLE_PHY_MODE_CODED_125KBPS] = 376,
    [BLE_PHY_MODE_CODED_500KBPS] = 376
};
#endif

/* Various radio timings */
/* Radio ramp-up times in usecs (fast mode) */
#define BLE_PHY_T_TXENFAST      (XCVR_TX_RADIO_RAMPUP_USECS)
#define BLE_PHY_T_RXENFAST      (XCVR_RX_RADIO_RAMPUP_USECS)

/* delay between EVENTS_READY and start of tx */
static const uint8_t g_ble_phy_t_txdelay[BLE_PHY_NUM_MODE] = {
    [BLE_PHY_MODE_1M] = 4,
    [BLE_PHY_MODE_2M] = 3,
    [BLE_PHY_MODE_CODED_125KBPS] = 5,
    [BLE_PHY_MODE_CODED_500KBPS] = 5
};
/* delay between EVENTS_END and end of txd packet */
static const uint8_t g_ble_phy_t_txenddelay[BLE_PHY_NUM_MODE] = {
    [BLE_PHY_MODE_1M] = 4,
    [BLE_PHY_MODE_2M] = 3,
    [BLE_PHY_MODE_CODED_125KBPS] = 9,
    [BLE_PHY_MODE_CODED_500KBPS] = 3
};
/* delay between rxd access address (w/ TERM1 for coded) and EVENTS_ADDRESS */
static const uint8_t g_ble_phy_t_rxaddrdelay[BLE_PHY_NUM_MODE] = {
    [BLE_PHY_MODE_1M] = 6,
    [BLE_PHY_MODE_2M] = 2,
    [BLE_PHY_MODE_CODED_125KBPS] = 17,
    [BLE_PHY_MODE_CODED_500KBPS] = 17
};
/* delay between end of rxd packet and EVENTS_END */
static const uint8_t g_ble_phy_t_rxenddelay[BLE_PHY_NUM_MODE] = {
    [BLE_PHY_MODE_1M] = 6,
    [BLE_PHY_MODE_2M] = 2,
    [BLE_PHY_MODE_CODED_125KBPS] = 27,
    [BLE_PHY_MODE_CODED_500KBPS] = 22
};

/* Statistics */
STATS_SECT_START(ble_phy_stats)
STATS_SECT_ENTRY(phy_isrs)
STATS_SECT_ENTRY(tx_good)
STATS_SECT_ENTRY(tx_fail)
STATS_SECT_ENTRY(tx_late)
STATS_SECT_ENTRY(tx_bytes)
STATS_SECT_ENTRY(rx_starts)
STATS_SECT_ENTRY(rx_aborts)
STATS_SECT_ENTRY(rx_valid)
STATS_SECT_ENTRY(rx_crc_err)
STATS_SECT_ENTRY(rx_late)
STATS_SECT_ENTRY(radio_state_errs)
STATS_SECT_ENTRY(rx_hw_err)
STATS_SECT_ENTRY(tx_hw_err)
STATS_SECT_END
STATS_SECT_DECL(ble_phy_stats) ble_phy_stats;

STATS_NAME_START(ble_phy_stats)
STATS_NAME(ble_phy_stats, phy_isrs)
STATS_NAME(ble_phy_stats, tx_good)
STATS_NAME(ble_phy_stats, tx_fail)
STATS_NAME(ble_phy_stats, tx_late)
STATS_NAME(ble_phy_stats, tx_bytes)
STATS_NAME(ble_phy_stats, rx_starts)
STATS_NAME(ble_phy_stats, rx_aborts)
STATS_NAME(ble_phy_stats, rx_valid)
STATS_NAME(ble_phy_stats, rx_crc_err)
STATS_NAME(ble_phy_stats, rx_late)
STATS_NAME(ble_phy_stats, radio_state_errs)
STATS_NAME(ble_phy_stats, rx_hw_err)
STATS_NAME(ble_phy_stats, tx_hw_err)
STATS_NAME_END(ble_phy_stats)

#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
/*
 * Per nordic, the number of bytes needed for scratch is 16 + MAX_PKT_SIZE.
 * However, when I used a smaller size it still overwrote the scratchpad. Until
 * I figure this out I am just going to allocate 67 words so we have enough
 * space for 267 bytes of scratch. I used 268 bytes since not sure if this
 * needs to be aligned and burning a byte is no big deal.
 *
 *#define NRF_ENC_SCRATCH_WORDS (((MYNEWT_VAL(BLE_LL_MAX_PKT_SIZE) + 16) + 3) / 4)
 */
#define NRF_ENC_SCRATCH_WORDS   (67)

static uint32_t nrf_encrypt_scratchpad[NRF_ENC_SCRATCH_WORDS];

struct nrf_ccm_data {
    uint8_t key[16];
    uint64_t pkt_counter;
    uint8_t dir_bit;
    uint8_t iv[8];
} __attribute__((packed));

static struct nrf_ccm_data nrf_ccm_data;
#endif

#if (BLE_LL_BT5_PHY_SUPPORTED == 1)

uint32_t
ble_phy_mode_pdu_start_off(int phy_mode)
{
    return g_ble_phy_mode_pkt_start_off[phy_mode];
}

static void
ble_phy_mode_apply(uint8_t phy_mode)
{
    if (phy_mode == g_ble_phy_data.phy_cur_phy_mode) {
        return;
    }

    switch (phy_mode) {
    case BLE_PHY_MODE_1M:
        NRF_RADIO_NS->MODE = RADIO_MODE_MODE_Ble_1Mbit;
        NRF_RADIO_NS->PCNF0 = NRF_PCNF0_1M;
        break;
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_2M_PHY)
    case BLE_PHY_MODE_2M:
        NRF_RADIO_NS->MODE = RADIO_MODE_MODE_Ble_2Mbit;
        NRF_RADIO_NS->PCNF0 = NRF_PCNF0_2M;
        break;
#endif
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_CODED_PHY)
    case BLE_PHY_MODE_CODED_125KBPS:
        NRF_RADIO_NS->MODE = RADIO_MODE_MODE_Ble_LR125Kbit;
        NRF_RADIO_NS->PCNF0 = NRF_PCNF0_CODED;
        break;
    case BLE_PHY_MODE_CODED_500KBPS:
        NRF_RADIO_NS->MODE = RADIO_MODE_MODE_Ble_LR500Kbit;
        NRF_RADIO_NS->PCNF0 = NRF_PCNF0_CODED;
        break;
#endif
    default:
        assert(0);
    }

    g_ble_phy_data.phy_cur_phy_mode = phy_mode;
}
#endif

void
ble_phy_mode_set(uint8_t tx_phy_mode, uint8_t rx_phy_mode)
{
    g_ble_phy_data.phy_tx_phy_mode = tx_phy_mode;
    g_ble_phy_data.phy_rx_phy_mode = rx_phy_mode;
}

int
ble_phy_get_cur_phy(void)
{
#if (BLE_LL_BT5_PHY_SUPPORTED == 1)
    switch (g_ble_phy_data.phy_cur_phy_mode) {
    case BLE_PHY_MODE_1M:
        return BLE_PHY_1M;
    case BLE_PHY_MODE_2M:
        return BLE_PHY_2M;
    case BLE_PHY_MODE_CODED_125KBPS:
    case BLE_PHY_MODE_CODED_500KBPS:
        return BLE_PHY_CODED;
    default:
        assert(0);
        return -1;
    }
#else
    return BLE_PHY_1M;
#endif
}

void
ble_phy_rxpdu_copy(uint8_t *dptr, struct os_mbuf *rxpdu)
{
    uint32_t rem_len;
    uint32_t copy_len;
    uint32_t block_len;
    uint32_t block_rem_len;
    void *dst;
    void *src;
    struct os_mbuf * om;

    /* Better be aligned */
    assert(((uint32_t)dptr & 3) == 0);

    block_len = rxpdu->om_omp->omp_databuf_len;
    rem_len = OS_MBUF_PKTHDR(rxpdu)->omp_len;
    src = dptr;

    /*
     * Setup for copying from first mbuf which is shorter due to packet header
     * and extra leading space
     */
    copy_len = block_len - rxpdu->om_pkthdr_len - 4;
    om = rxpdu;
    dst = om->om_data;

    while (true) {
        /*
         * Always copy blocks of length aligned to word size, only last mbuf
         * will have remaining non-word size bytes appended.
         */
        block_rem_len = copy_len;
        copy_len = min(copy_len, rem_len);
        copy_len &= ~3;

        dst = om->om_data;
        om->om_len = copy_len;
        rem_len -= copy_len;
        block_rem_len -= copy_len;

        __asm__ volatile (".syntax unified              \n"
                          "   mov  r4, %[len]           \n"
                          "   b    2f                   \n"
                          "1: ldr  r3, [%[src], %[len]] \n"
                          "   str  r3, [%[dst], %[len]] \n"
                          "2: subs %[len], #4           \n"
                          "   bpl  1b                   \n"
                          "   adds %[src], %[src], r4   \n"
                          "   adds %[dst], %[dst], r4   \n"
                          : [dst] "+r" (dst), [src] "+r" (src),
                          [len] "+r" (copy_len)
                          :
                          : "r3", "r4", "memory"
                          );

        if ((rem_len < 4) && (block_rem_len >= rem_len)) {
            break;
        }

        /* Move to next mbuf */
        om = SLIST_NEXT(om, om_next);
        copy_len = block_len;
    }

    /* Copy remaining bytes, if any, to last mbuf */
    om->om_len += rem_len;
    __asm__ volatile (".syntax unified              \n"
                      "   b    2f                   \n"
                      "1: ldrb r3, [%[src], %[len]] \n"
                      "   strb r3, [%[dst], %[len]] \n"
                      "2: subs %[len], #1           \n"
                      "   bpl  1b                   \n"
                      : [len] "+r" (rem_len)
                      : [dst] "r" (dst), [src] "r" (src)
                      : "r3", "memory"
                      );

    /* Copy header */
    memcpy(BLE_MBUF_HDR_PTR(rxpdu), &g_ble_phy_data.rxhdr,
           sizeof(struct ble_mbuf_hdr));
}

/**
 * Called when we want to wait if the radio is in either the rx or tx
 * disable states. We want to wait until that state is over before doing
 * anything to the radio
 */
static void
nrf_wait_disabled(void)
{
    uint32_t state;

    state = NRF_RADIO_NS->STATE;
    if (state != RADIO_STATE_STATE_Disabled) {
        if ((state == RADIO_STATE_STATE_RxDisable) ||
            (state == RADIO_STATE_STATE_TxDisable)) {
            /* This will end within a short time (6 usecs). Just poll */
            while (NRF_RADIO_NS->STATE == state) {
                /* If this fails, something is really wrong. Should last
                 * no more than 6 usecs
                 */
            }
        }
    }
}

static int
ble_phy_set_start_time(uint32_t cputime, uint8_t rem_usecs, bool tx)
{
    uint32_t next_cc;
    uint32_t cur_cc;
    uint32_t cntr;
    uint32_t delta;

    /*
     * We need to adjust start time to include radio ramp-up and TX pipeline
     * delay (the latter only if applicable, so only for TX).
     *
     * Radio ramp-up time is 40 usecs and TX delay is 3 or 5 usecs depending on
     * phy, thus we'll offset RTC by 2 full ticks (61 usecs) and then compensate
     * using TIMER0 with 1 usec precision.
     */

    cputime -= 2;
    rem_usecs += 61;
    if (tx) {
        rem_usecs -= BLE_PHY_T_TXENFAST;
        rem_usecs -= g_ble_phy_t_txdelay[g_ble_phy_data.phy_cur_phy_mode];
    } else {
        rem_usecs -= BLE_PHY_T_RXENFAST;
    }

    /*
     * rem_usecs will be no more than 2 ticks, but if it is more than single
     * tick then we should better count one more low-power tick rather than
     * 30 high-power usecs. Also make sure we don't set TIMER0 CC to 0 as the
     * compare won't occur.
     */

    if (rem_usecs > 30) {
        cputime++;
        rem_usecs -= 30;
    }

    /*
     * Can we set the RTC compare to start TIMER0? We can do it if:
     *      a) Current compare value is not N+1 or N+2 ticks from current
     *      counter.
     *      b) The value we want to set is not at least N+2 from current
     *      counter.
     *
     * NOTE: since the counter can tick 1 while we do these calculations we
     * need to account for it.
     */
    next_cc = cputime & 0xffffff;
    cur_cc = NRF_RTC0_NS->CC[0];
    cntr = NRF_RTC0_NS->COUNTER;

    delta = (cur_cc - cntr) & 0xffffff;
    if ((delta <= 3) && (delta != 0)) {
        return -1;
    }
    delta = (next_cc - cntr) & 0xffffff;
    if ((delta & 0x800000) || (delta < 3)) {
        return -1;
    }

    /* Clear and set TIMER0 to fire off at proper time */
    NRF_TIMER0_NS->TASKS_CLEAR = 1;
    NRF_TIMER0_NS->CC[0] = rem_usecs;
    NRF_TIMER0_NS->EVENTS_COMPARE[0] = 0;

    /* Set RTC compare to start TIMER0 */
    NRF_RTC0_NS->EVENTS_COMPARE[0] = 0;
    NRF_RTC0_NS->CC[0] = next_cc;
    NRF_RTC0_NS->EVTENSET = RTC_EVTENSET_COMPARE0_Msk;

    /* Enable PPI */
    NRF_TIMER0_NS->SUBSCRIBE_START = DPPI_SUBSCRIBE_TIMER0_TASKS_START(1);

    /* Store the cputime at which we set the RTC */
    g_ble_phy_data.phy_start_cputime = cputime;

    return 0;
}

static int
ble_phy_set_start_now(void)
{
    os_sr_t sr;
    uint32_t now;

    OS_ENTER_CRITICAL(sr);

    /*
     * Set TIMER0 to fire immediately. We can't set CC to 0 as compare will not
     * occur in such case.
     */
    NRF_TIMER0_NS->TASKS_CLEAR = 1;
    NRF_TIMER0_NS->CC[0] = 1;
    NRF_TIMER0_NS->EVENTS_COMPARE[0] = 0;

    /*
     * Set RTC compare to start TIMER0. We need to set it to at least N+2 ticks
     * from current value to guarantee triggering compare event, but let's set
     * it to N+3 to account for possible extra tick on RTC0 during these
     * operations.
     */
    now = os_cputime_get32();
    NRF_RTC0_NS->EVENTS_COMPARE[0] = 0;
    NRF_RTC0_NS->CC[0] = now + 3;
    NRF_RTC0_NS->EVTENSET = RTC_EVTENSET_COMPARE0_Msk;

    /* Enable PPI */
    NRF_TIMER0_NS->SUBSCRIBE_START = DPPI_SUBSCRIBE_TIMER0_TASKS_START(1);

    /*
     * Store the cputime at which we set the RTC
     *
     * XXX Compare event may be triggered on previous CC value (if it was set to
     * less than N+2) so in rare cases actual start time may be 2 ticks earlier
     * than what we expect. Since this is only used on RX, it may cause AUX scan
     * to be scheduled 1 or 2 ticks too late so we'll miss it - it's acceptable
     * for now.
     */
    g_ble_phy_data.phy_start_cputime = now + 3;

    OS_EXIT_CRITICAL(sr);

    return 0;
}

void
ble_phy_wfr_enable(int txrx, uint8_t tx_phy_mode, uint32_t wfr_usecs)
{
    uint32_t end_time;
    uint8_t phy;

    phy = g_ble_phy_data.phy_cur_phy_mode;

    if (txrx == BLE_PHY_WFR_ENABLE_TXRX) {
        /* RX shall start exactly T_IFS after TX end captured in CC[2] */
        end_time = NRF_TIMER0_NS->CC[2] + BLE_LL_IFS;
        /* Adjust for delay between EVENT_END and actual TX end time */
        end_time += g_ble_phy_t_txenddelay[tx_phy_mode];
        /* Wait a bit longer due to allowed active clock accuracy */
        end_time += 2;
        /*
         * It's possible that we'll capture PDU start time at the end of timer
         * cycle and since wfr expires at the beginning of calculated timer
         * cycle it can be almost 1 usec too early. Let's compensate for this
         * by waiting 1 usec more.
         */
        end_time += 1;
    } else {
        /*
         * RX shall start no later than wfr_usecs after RX enabled.
         * CC[0] is the time of RXEN so adjust for radio ram-up.
         * Do not add jitter since this is already covered by LL.
         */
        end_time = NRF_TIMER0_NS->CC[0] + BLE_PHY_T_RXENFAST + wfr_usecs;
    }

    /*
     * Note: on LE Coded EVENT_ADDRESS is fired after TERM1 is received, so
     *       we are actually calculating relative to start of packet payload
     *       which is fine.
     */

    /* Adjust for receiving access address since this triggers EVENT_ADDRESS */
    end_time += ble_phy_mode_pdu_start_off(phy);
    /* Adjust for delay between actual access address RX and EVENT_ADDRESS */
    end_time += g_ble_phy_t_rxaddrdelay[phy];

    /* wfr_secs is the time from rxen until timeout */
    NRF_TIMER0_NS->CC[3] = end_time;
    NRF_TIMER0_NS->EVENTS_COMPARE[3] = 0;

    /* Subscribe for wait for response events  */
    NRF_TIMER0_NS->SUBSCRIBE_CAPTURE[3] = DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE3(1);
    NRF_RADIO_NS->SUBSCRIBE_DISABLE = DPPI_SUBSCRIBE_RADIO_TASKS_DISABLE(1);

    /* Enable the disabled interrupt so we time out on events compare */
    NRF_RADIO_NS->INTENSET = RADIO_INTENSET_DISABLED_Msk;

    /*
     * It may happen that if CPU is halted for a brief moment (e.g. during flash
     * erase or write), TIMER0 already counted past CC[3] and thus wfr will not
     * fire as expected. In case this happened, let's just disable PPIs for wfr
     * and trigger wfr manually (i.e. disable radio).
     *
     * Note that the same applies to RX start time set in CC[0] but since it
     * should fire earlier than wfr, fixing wfr is enough.
     *
     * CC[1] is only used as a reference on RX start, we do not need it here so
     * it can be used to read TIMER0 counter.
     */
    NRF_TIMER0_NS->TASKS_CAPTURE[1] = 1;
    if (NRF_TIMER0_NS->CC[1] > NRF_TIMER0_NS->CC[3]) {
        /* Unsubscribe from wfr events */
        NRF_TIMER0_NS->SUBSCRIBE_CAPTURE[3] = DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE3(0);
        NRF_RADIO_NS->SUBSCRIBE_DISABLE = DPPI_SUBSCRIBE_RADIO_TASKS_DISABLE(0);

        NRF_RADIO_NS->TASKS_DISABLE = 1;
    }
}

#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
static uint32_t
ble_phy_get_ccm_datarate(void)
{
#if BLE_LL_BT5_PHY_SUPPORTED
    switch (g_ble_phy_data.phy_cur_phy_mode) {
    case BLE_PHY_MODE_1M:
        return CCM_MODE_DATARATE_1Mbit << CCM_MODE_DATARATE_Pos;
    case BLE_PHY_MODE_2M:
        return CCM_MODE_DATARATE_2Mbit << CCM_MODE_DATARATE_Pos;
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_CODED_PHY)
    case BLE_PHY_MODE_CODED_125KBPS:
        return CCM_MODE_DATARATE_125Kbps << CCM_MODE_DATARATE_Pos;
    case BLE_PHY_MODE_CODED_500KBPS:
        return CCM_MODE_DATARATE_500Kbps << CCM_MODE_DATARATE_Pos;
#endif
    }

    assert(0);
    return 0;
#else
    return CCM_MODE_DATARATE_1Mbit << CCM_MODE_DATARATE_Pos;
#endif
}
#endif

/**
 * Setup transceiver for receive.
 */
static void
ble_phy_rx_xcvr_setup(void)
{
    uint8_t *dptr;

    dptr = (uint8_t *)&g_ble_phy_rx_buf[0];
    dptr += 3;

#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
    if (g_ble_phy_data.phy_encrypted) {
        NRF_RADIO_NS->PACKETPTR = (uint32_t)&g_ble_phy_enc_buf[0];
        NRF_CCM_NS->INPTR = (uint32_t)&g_ble_phy_enc_buf[0];
        NRF_CCM_NS->OUTPTR = (uint32_t)dptr;
        NRF_CCM_NS->SCRATCHPTR = (uint32_t)&nrf_encrypt_scratchpad[0];
        NRF_CCM_NS->MODE = CCM_MODE_LENGTH_Msk | CCM_MODE_MODE_Decryption |
                           ble_phy_get_ccm_datarate();
        NRF_CCM_NS->CNFPTR = (uint32_t)&nrf_ccm_data;
        NRF_CCM_NS->SHORTS = 0;
        NRF_CCM_NS->EVENTS_ERROR = 0;
        NRF_CCM_NS->EVENTS_ENDCRYPT = 0;
        NRF_CCM_NS->TASKS_KSGEN = 1;

        /* Subscribe to radio address event */
        NRF_CCM_NS->SUBSCRIBE_CRYPT = DPPI_SUBSCRIBE_CCM_TASKS_CRYPT(1);
    } else {
        NRF_RADIO_NS->PACKETPTR = (uint32_t)dptr;
    }
#else
    NRF_RADIO_NS->PACKETPTR = (uint32_t)dptr;
#endif

#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
    if (g_ble_phy_data.phy_privacy) {
        NRF_AAR_NS->ENABLE = AAR_ENABLE_ENABLE_Enabled;
        NRF_AAR_NS->IRKPTR = (uint32_t)&g_nrf_irk_list[0];
        NRF_AAR_NS->SCRATCHPTR = (uint32_t)&g_ble_phy_data.phy_aar_scratch;
        NRF_AAR_NS->EVENTS_END = 0;
        NRF_AAR_NS->EVENTS_RESOLVED = 0;
        NRF_AAR_NS->EVENTS_NOTRESOLVED = 0;
    } else {
        if (g_ble_phy_data.phy_encrypted == 0) {
            NRF_AAR_NS->ENABLE = AAR_ENABLE_ENABLE_Disabled;
        }
    }
#endif

    /* Turn off trigger TXEN on output compare match and AAR on bcmatch */
    NRF_RADIO_NS->SUBSCRIBE_TXEN = DPPI_SUBSCRIBE_RADIO_TASKS_TXEN(0);
    NRF_AAR_NS->SUBSCRIBE_START = DPPI_SUBSCRIBE_AAR_TASKS_START(0);

    /* Reset the rx started flag. Used for the wait for response */
    g_ble_phy_data.phy_rx_started = 0;
    g_ble_phy_data.phy_state = BLE_PHY_STATE_RX;

#if BLE_LL_BT5_PHY_SUPPORTED
    /*
     * On Coded PHY there are CI and TERM1 fields before PDU starts so we need
     * to take this into account when setting up BCC.
     */
    if (g_ble_phy_data.phy_cur_phy_mode == BLE_PHY_MODE_CODED_125KBPS ||
        g_ble_phy_data.phy_cur_phy_mode == BLE_PHY_MODE_CODED_500KBPS) {
        g_ble_phy_data.phy_bcc_offset = 5;
    } else {
        g_ble_phy_data.phy_bcc_offset = 0;
    }
#else
    g_ble_phy_data.phy_bcc_offset = 0;
#endif

    /* I want to know when 1st byte received (after address) */
    NRF_RADIO_NS->BCC = 8 + g_ble_phy_data.phy_bcc_offset; /* in bits */
    NRF_RADIO_NS->EVENTS_ADDRESS = 0;
    NRF_RADIO_NS->EVENTS_DEVMATCH = 0;
    NRF_RADIO_NS->EVENTS_BCMATCH = 0;
    NRF_RADIO_NS->EVENTS_RSSIEND = 0;
    NRF_RADIO_NS->EVENTS_CRCOK = 0;
    NRF_RADIO_NS->SHORTS = RADIO_SHORTS_END_DISABLE_Msk |
                           RADIO_SHORTS_READY_START_Msk |
                           RADIO_SHORTS_ADDRESS_BCSTART_Msk |
                           RADIO_SHORTS_ADDRESS_RSSISTART_Msk |
                           RADIO_SHORTS_DISABLED_RSSISTOP_Msk;

    NRF_RADIO_NS->INTENSET = RADIO_INTENSET_ADDRESS_Msk;
}

/**
 * Called from interrupt context when the transmit ends
 *
 */
static void
ble_phy_tx_end_isr(void)
{
    uint8_t tx_phy_mode;
    uint8_t was_encrypted;
    uint8_t transition;
    uint32_t rx_time;
    uint32_t wfr_time;

    /* Store PHY on which we've just transmitted smth */
    tx_phy_mode = g_ble_phy_data.phy_cur_phy_mode;

    /* If this transmission was encrypted we need to remember it */
    was_encrypted = g_ble_phy_data.phy_encrypted;
    (void)was_encrypted;

    /* Better be in TX state! */
    assert(g_ble_phy_data.phy_state == BLE_PHY_STATE_TX);

    /* Clear events and clear interrupt on disabled event */
    NRF_RADIO_NS->EVENTS_DISABLED = 0;
    NRF_RADIO_NS->INTENCLR = RADIO_INTENCLR_DISABLED_Msk;
    NRF_RADIO_NS->EVENTS_END = 0;
    wfr_time = NRF_RADIO_NS->SHORTS;
    (void)wfr_time;

#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
    /*
     * XXX: not sure what to do. We had a HW error during transmission.
     * For now I just count a stat but continue on like all is good.
     */
    if (was_encrypted) {
        if (NRF_CCM_NS->EVENTS_ERROR) {
            STATS_INC(ble_phy_stats, tx_hw_err);
            NRF_CCM_NS->EVENTS_ERROR = 0;
        }
    }
#endif

    /* Call transmit end callback */
    if (g_ble_phy_data.txend_cb) {
        g_ble_phy_data.txend_cb(g_ble_phy_data.txend_arg);
    }

    transition = g_ble_phy_data.phy_transition;
    if (transition == BLE_PHY_TRANSITION_TX_RX) {

#if (BLE_LL_BT5_PHY_SUPPORTED == 1)
        ble_phy_mode_apply(g_ble_phy_data.phy_rx_phy_mode);
#endif

        /* Packet pointer needs to be reset. */
        ble_phy_rx_xcvr_setup();

        ble_phy_wfr_enable(BLE_PHY_WFR_ENABLE_TXRX, tx_phy_mode, 0);

        /* Schedule RX exactly T_IFS after TX end captured in CC[2] */
        rx_time = NRF_TIMER0_NS->CC[2] + BLE_LL_IFS;
        /* Adjust for delay between EVENT_END and actual TX end time */
        rx_time += g_ble_phy_t_txenddelay[tx_phy_mode];
        /* Adjust for radio ramp-up */
        rx_time -= BLE_PHY_T_RXENFAST;
        /* Start listening a bit earlier due to allowed active clock accuracy */
        rx_time -= 2;

        NRF_TIMER0_NS->CC[0] = rx_time;
        NRF_TIMER0_NS->EVENTS_COMPARE[0] = 0;

        /* Start radio on timer */
        NRF_RADIO_NS->SUBSCRIBE_RXEN = DPPI_SUBSCRIBE_RADIO_TASKS_RXEN(1);

    } else {
        NRF_TIMER0_NS->TASKS_STOP = 1;
        NRF_TIMER0_NS->TASKS_SHUTDOWN = 1;

        NRF_TIMER0_NS->SUBSCRIBE_CAPTURE[3] = DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE3(0);
        NRF_RADIO_NS->SUBSCRIBE_DISABLE = DPPI_SUBSCRIBE_RADIO_TASKS_DISABLE(0);
        NRF_RADIO_NS->SUBSCRIBE_TXEN = DPPI_SUBSCRIBE_RADIO_TASKS_TXEN(0);
        NRF_TIMER0_NS->SUBSCRIBE_START = DPPI_SUBSCRIBE_TIMER0_TASKS_START(0);

        assert(transition == BLE_PHY_TRANSITION_NONE);
    }
}

static inline uint8_t
ble_phy_get_cur_rx_phy_mode(void)
{
    uint8_t phy;

    phy = g_ble_phy_data.phy_cur_phy_mode;

#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_CODED_PHY)
    /*
     * For Coded PHY mode can be set to either codings since actual coding is
     * set in packet header. However, here we need actual coding of received
     * packet as this determines pipeline delays so need to figure this out
     * using CI field.
     */
    if ((phy == BLE_PHY_MODE_CODED_125KBPS) ||
        (phy == BLE_PHY_MODE_CODED_500KBPS)) {
        phy = NRF_RADIO_NS->PDUSTAT & RADIO_PDUSTAT_CISTAT_Msk ?
              BLE_PHY_MODE_CODED_500KBPS : BLE_PHY_MODE_CODED_125KBPS;
    }
#endif

    return phy;
}

static void
ble_phy_rx_end_isr(void)
{
    int rc;
    uint8_t *dptr;
    uint8_t crcok;
    uint32_t tx_time;
    struct ble_mbuf_hdr *ble_hdr;

    /* Clear events and clear interrupt */
    NRF_RADIO_NS->EVENTS_END = 0;
    NRF_RADIO_NS->INTENCLR = RADIO_INTENCLR_END_Msk;

    /* Disable automatic RXEN */
    NRF_RADIO_NS->SUBSCRIBE_RXEN = DPPI_SUBSCRIBE_RADIO_TASKS_RXEN(0);

    /* Set RSSI and CRC status flag in header */
    ble_hdr = &g_ble_phy_data.rxhdr;
    assert(NRF_RADIO_NS->EVENTS_RSSIEND != 0);
    ble_hdr->rxinfo.rssi = (-1 * NRF_RADIO_NS->RSSISAMPLE) +
                           g_ble_phy_data.rx_pwr_compensation;

    dptr = (uint8_t *)&g_ble_phy_rx_buf[0];
    dptr += 3;

    /* Count PHY crc errors and valid packets */
    crcok = NRF_RADIO_NS->EVENTS_CRCOK;
    if (!crcok) {
        STATS_INC(ble_phy_stats, rx_crc_err);
    } else {
        STATS_INC(ble_phy_stats, rx_valid);
        ble_hdr->rxinfo.flags |= BLE_MBUF_HDR_F_CRC_OK;
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
        if (g_ble_phy_data.phy_encrypted) {
            /* Only set MIC failure flag if frame is not zero length */
            if ((dptr[1] != 0) && (NRF_CCM_NS->MICSTATUS == 0)) {
                ble_hdr->rxinfo.flags |= BLE_MBUF_HDR_F_MIC_FAILURE;
            }

            /*
             * XXX: not sure how to deal with this. This should not
             * be a MIC failure but we should not hand it up. I guess
             * this is just some form of rx error and that is how we
             * handle it? For now, just set CRC error flags
             */
            if (NRF_CCM_NS->EVENTS_ERROR) {
                STATS_INC(ble_phy_stats, rx_hw_err);
                ble_hdr->rxinfo.flags &= ~BLE_MBUF_HDR_F_CRC_OK;
            }

            /*
             * XXX: This is a total hack work-around for now but I dont
             * know what else to do. If ENDCRYPT is not set and we are
             * encrypted we need to not trust this frame and drop it.
             */
            if (NRF_CCM_NS->EVENTS_ENDCRYPT == 0) {
                STATS_INC(ble_phy_stats, rx_hw_err);
                ble_hdr->rxinfo.flags &= ~BLE_MBUF_HDR_F_CRC_OK;
            }
        }
#endif
    }

#if (BLE_LL_BT5_PHY_SUPPORTED == 1)
    ble_phy_mode_apply(g_ble_phy_data.phy_tx_phy_mode);
#endif

    /*
     * Let's schedule TX now and we will just cancel it after processing RXed
     * packet if we don't need TX.
     *
     * We need this to initiate connection in case AUX_CONNECT_REQ was sent on
     * LE Coded S8. In this case the time we process RXed packet is roughly the
     * same as the limit when we need to have TX scheduled (i.e. TIMER0 and PPI
     * armed) so we may simply miss the slot and set the timer in the past.
     *
     * When TX is scheduled in advance, we may event process packet a bit longer
     * during radio ramp-up - this gives us extra 40 usecs which is more than
     * enough.
     */

    /* Schedule TX exactly T_IFS after RX end captured in CC[2] */
    tx_time = NRF_TIMER0_NS->CC[2] + BLE_LL_IFS;
    /* Adjust for delay between actual RX end time and EVENT_END */
    tx_time -= g_ble_phy_t_rxenddelay[ble_hdr->rxinfo.phy_mode];
    /* Adjust for radio ramp-up */
    tx_time -= BLE_PHY_T_TXENFAST;
    /* Adjust for delay between EVENT_READY and actual TX start time */
    tx_time -= g_ble_phy_t_txdelay[g_ble_phy_data.phy_cur_phy_mode];

    NRF_TIMER0_NS->CC[0] = tx_time;
    NRF_TIMER0_NS->EVENTS_COMPARE[0] = 0;

    /* Enable automatic TX */
    NRF_RADIO_NS->SUBSCRIBE_TXEN = DPPI_SUBSCRIBE_RADIO_TASKS_TXEN(1);

    /*
     * XXX: Hack warning!
     *
     * It may happen (during flash erase) that CPU is stopped for a moment and
     * TIMER0 already counted past CC[0]. In such case we will be stuck waiting
     * for TX to start since EVENTS_COMPARE[0] will not happen any time soon.
     * For now let's set a flag denoting that we are late in RX-TX transition so
     * ble_phy_tx() will fail - this allows everything to cleanup nicely without
     * the need for extra handling in many places.
     *
     * Note: CC[3] is used only for wfr which we do not need here.
     */
    NRF_TIMER0_NS->TASKS_CAPTURE[3] = 1;
    if (NRF_TIMER0_NS->CC[3] > NRF_TIMER0_NS->CC[0]) {
        NRF_RADIO_NS->SUBSCRIBE_TXEN = DPPI_SUBSCRIBE_RADIO_TASKS_TXEN(0);

        g_ble_phy_data.phy_transition_late = 1;
    }

    /*
     * XXX: This is a horrible ugly hack to deal with the RAM S1 byte
     * that is not sent over the air but is present here. Simply move the
     * data pointer to deal with it. Fix this later.
     */
    dptr[2] = dptr[1];
    dptr[1] = dptr[0];
    rc = ble_ll_rx_end(dptr + 1, ble_hdr);
    if (rc < 0) {
        ble_phy_disable();
    }
}

static bool
ble_phy_rx_start_isr(void)
{
    int rc;
    uint32_t state;
    uint32_t usecs;
    uint32_t pdu_usecs;
    uint32_t ticks;
    struct ble_mbuf_hdr *ble_hdr;
    uint8_t *dptr;
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
    int adva_offset;
#endif

    dptr = (uint8_t *)&g_ble_phy_rx_buf[0];

    /* Clear events and clear interrupt */
    NRF_RADIO_NS->EVENTS_ADDRESS = 0;

    /* Clear wfr timer channels and DISABLED interrupt */
    NRF_RADIO_NS->INTENCLR = RADIO_INTENCLR_DISABLED_Msk | RADIO_INTENCLR_ADDRESS_Msk;
    NRF_TIMER0_NS->SUBSCRIBE_CAPTURE[3] = DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE3(0);
    NRF_RADIO_NS->SUBSCRIBE_DISABLE = DPPI_SUBSCRIBE_RADIO_TASKS_DISABLE(0);

    /* Initialize the ble mbuf header */
    ble_hdr = &g_ble_phy_data.rxhdr;
    ble_hdr->rxinfo.flags = ble_ll_state_get();
    ble_hdr->rxinfo.channel = g_ble_phy_data.phy_chan;
    ble_hdr->rxinfo.handle = 0;
    ble_hdr->rxinfo.phy = ble_phy_get_cur_phy();
    ble_hdr->rxinfo.phy_mode = ble_phy_get_cur_rx_phy_mode();
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_EXT_ADV)
    ble_hdr->rxinfo.user_data = NULL;
#endif

    /*
     * Calculate accurate packets start time (with remainder)
     *
     * We may start receiving packet somewhere during preamble in which case
     * it is possible that actual transmission started before TIMER0 was
     * running - need to take this into account.
     */
    ble_hdr->beg_cputime = g_ble_phy_data.phy_start_cputime;

    usecs = NRF_TIMER0_NS->CC[1];
    pdu_usecs = ble_phy_mode_pdu_start_off(ble_hdr->rxinfo.phy_mode) +
                g_ble_phy_t_rxaddrdelay[ble_hdr->rxinfo.phy_mode];
    if (usecs < pdu_usecs) {
        g_ble_phy_data.phy_start_cputime--;
        usecs += 30;
    }
    usecs -= pdu_usecs;

    ticks = os_cputime_usecs_to_ticks(usecs);
    usecs -= os_cputime_ticks_to_usecs(ticks);
    if (usecs == 31) {
        usecs = 0;
        ++ticks;
    }

    ble_hdr->beg_cputime += ticks;
    ble_hdr->rem_usecs = usecs;

    /* Wait to get 1st byte of frame */
    while (1) {
        state = NRF_RADIO_NS->STATE;
        if (NRF_RADIO_NS->EVENTS_BCMATCH != 0) {
            break;
        }

        /*
         * If state is disabled, we should have the BCMATCH. If not,
         * something is wrong!
         */
        if (state == RADIO_STATE_STATE_Disabled) {
            NRF_RADIO_NS->INTENCLR = NRF_RADIO_IRQ_MASK_ALL;
            NRF_RADIO_NS->SHORTS = 0;
            return false;
        }
    }

#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
    /*
     * If privacy is enabled and received PDU has TxAdd bit set (i.e. random
     * address) we try to resolve address using AAR.
     */
    if (g_ble_phy_data.phy_privacy && (dptr[3] & 0x40)) {
        /*
         * AdvA is located at 4th octet in RX buffer (after S0, length an S1
         * fields). In case of extended advertising PDU we need to add 2 more
         * octets for extended header.
         */
        adva_offset = (dptr[3] & 0x0f) == 0x07 ? 2 : 0;
        NRF_AAR_NS->ADDRPTR = (uint32_t)(dptr + 3 + adva_offset);

        /* Trigger AAR after last bit of AdvA is received */
        NRF_RADIO_NS->EVENTS_BCMATCH = 0;
        NRF_AAR_NS->SUBSCRIBE_START = DPPI_SUBSCRIBE_AAR_TASKS_START(1);
        NRF_RADIO_NS->BCC = (BLE_LL_PDU_HDR_LEN + adva_offset + BLE_DEV_ADDR_LEN) * 8 +
                            g_ble_phy_data.phy_bcc_offset;
    }
#endif

    /* Call Link Layer receive start function */
    rc = ble_ll_rx_start(dptr + 3,
                         g_ble_phy_data.phy_chan,
                         &g_ble_phy_data.rxhdr);
    if (rc >= 0) {
        /* Set rx started flag and enable rx end ISR */
        g_ble_phy_data.phy_rx_started = 1;
        NRF_RADIO_NS->INTENSET = RADIO_INTENSET_END_Msk;
    } else {
        /* Disable PHY */
        ble_phy_disable();
        STATS_INC(ble_phy_stats, rx_aborts);
    }

    /* Count rx starts */
    STATS_INC(ble_phy_stats, rx_starts);

    return true;
}

static void
ble_phy_isr(void)
{
    uint32_t irq_en;

    os_trace_isr_enter();

    /* Read irq register to determine which interrupts are enabled */
    irq_en = NRF_RADIO_NS->INTENCLR;

    /*
     * NOTE: order of checking is important! Possible, if things get delayed,
     * we have both an ADDRESS and DISABLED interrupt in rx state. If we get
     * an address, we disable the DISABLED interrupt.
     */

    /* We get this if we have started to receive a frame */
    if ((irq_en & RADIO_INTENCLR_ADDRESS_Msk) && NRF_RADIO_NS->EVENTS_ADDRESS) {
        /*
         * wfr timer is calculated to expire at the exact time we should start
         * receiving a packet (with 1 usec precision) so it is possible  it will
         * fire at the same time as EVENT_ADDRESS. If this happens, radio will
         * be disabled while we are waiting for EVENT_BCCMATCH after 1st byte
         * of payload is received and ble_phy_rx_start_isr() will fail. In this
         * case we should not clear DISABLED irq mask so it will be handled as
         * regular radio disabled event below. In other case radio was disabled
         * on purpose and there's nothing more to handle so we can clear mask.
         */
        if (ble_phy_rx_start_isr()) {
            irq_en &= ~RADIO_INTENCLR_DISABLED_Msk;
        }
    }

    /* Check for disabled event. This only happens for transmits now */
    if ((irq_en & RADIO_INTENCLR_DISABLED_Msk) && NRF_RADIO_NS->EVENTS_DISABLED) {
        if (g_ble_phy_data.phy_state == BLE_PHY_STATE_RX) {
            NRF_RADIO_NS->EVENTS_DISABLED = 0;
            ble_ll_wfr_timer_exp(NULL);
        } else if (g_ble_phy_data.phy_state == BLE_PHY_STATE_IDLE) {
            assert(0);
        } else {
            ble_phy_tx_end_isr();
        }
    }

    /* Receive packet end (we dont enable this for transmit) */
    if ((irq_en & RADIO_INTENCLR_END_Msk) && NRF_RADIO_NS->EVENTS_END) {
        ble_phy_rx_end_isr();
    }

    g_ble_phy_data.phy_transition_late = 0;

    /* Ensures IRQ is cleared */
    irq_en = NRF_RADIO_NS->SHORTS;

    /* Count # of interrupts */
    STATS_INC(ble_phy_stats, phy_isrs);

    os_trace_isr_exit();
}

int
ble_phy_init(void)
{
    int rc;

    /* Default phy to use is 1M */
    g_ble_phy_data.phy_cur_phy_mode = BLE_PHY_MODE_1M;
    g_ble_phy_data.phy_tx_phy_mode = BLE_PHY_MODE_1M;
    g_ble_phy_data.phy_rx_phy_mode = BLE_PHY_MODE_1M;

    g_ble_phy_data.rx_pwr_compensation = 0;

    /* Set phy channel to an invalid channel so first set channel works */
    g_ble_phy_data.phy_chan = BLE_PHY_NUM_CHANS;

    /* Toggle peripheral power to reset (just in case) */
    NRF_RADIO_NS->POWER = 0;
    NRF_RADIO_NS->POWER = 1;

    /* Errata 16 - RADIO: POWER register is not functional
     * Workaround: Reset all RADIO registers in firmware.
     */
    NRF_RADIO_NS->SUBSCRIBE_TXEN = 0;
    NRF_RADIO_NS->SUBSCRIBE_RXEN = 0;
    NRF_RADIO_NS->SUBSCRIBE_DISABLE = 0;

    /* Disable all interrupts */
    NRF_RADIO_NS->INTENCLR = NRF_RADIO_IRQ_MASK_ALL;

    /* Set configuration registers */
    NRF_RADIO_NS->MODE = RADIO_MODE_MODE_Ble_1Mbit;
    NRF_RADIO_NS->PCNF0 = NRF_PCNF0;

    /* XXX: should maxlen be 251 for encryption? */
    NRF_RADIO_NS->PCNF1 = NRF_MAXLEN |
                          (RADIO_PCNF1_ENDIAN_Little <<  RADIO_PCNF1_ENDIAN_Pos) |
                          (NRF_BALEN << RADIO_PCNF1_BALEN_Pos) |
                          RADIO_PCNF1_WHITEEN_Msk;

    /* Enable radio fast ramp-up */
    NRF_RADIO_NS->MODECNF0 |= (RADIO_MODECNF0_RU_Fast << RADIO_MODECNF0_RU_Pos) & RADIO_MODECNF0_RU_Msk;

    /* Set logical address 1 for TX and RX */
    NRF_RADIO_NS->TXADDRESS = 0;
    NRF_RADIO_NS->RXADDRESSES = (1 << 0);

    /* Configure the CRC registers */
    NRF_RADIO_NS->CRCCNF = (RADIO_CRCCNF_SKIPADDR_Skip << RADIO_CRCCNF_SKIPADDR_Pos) | RADIO_CRCCNF_LEN_Three;

    /* Configure BLE poly */
    NRF_RADIO_NS->CRCPOLY = 0x0000065B;

    /* Configure IFS */
    NRF_RADIO_NS->TIFS = BLE_LL_IFS;

#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
    NRF_CCM_NS->INTENCLR = 0xffffffff;
    NRF_CCM_NS->SHORTS = CCM_SHORTS_ENDKSGEN_CRYPT_Msk;
    NRF_CCM_NS->EVENTS_ERROR = 0;
    memset(nrf_encrypt_scratchpad, 0, sizeof(nrf_encrypt_scratchpad));
#endif

#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
    g_ble_phy_data.phy_aar_scratch = 0;
    NRF_AAR_NS->IRKPTR = (uint32_t)&g_nrf_irk_list[0];
    NRF_AAR_NS->INTENCLR = 0xffffffff;
    NRF_AAR_NS->EVENTS_END = 0;
    NRF_AAR_NS->EVENTS_RESOLVED = 0;
    NRF_AAR_NS->EVENTS_NOTRESOLVED = 0;
    NRF_AAR_NS->NIRK = 0;
#endif

    /* TIMER0 setup for PHY when using RTC */
    NRF_TIMER0_NS->TASKS_STOP = 1;
    NRF_TIMER0_NS->TASKS_SHUTDOWN = 1;
    NRF_TIMER0_NS->BITMODE = 3;    /* 32-bit timer */
    NRF_TIMER0_NS->MODE = 0;       /* Timer mode */
    NRF_TIMER0_NS->PRESCALER = 4;  /* gives us 1 MHz */

    /* Publish events */
    NRF_TIMER0_NS->PUBLISH_COMPARE[0] = DPPI_PUBLISH_TIMER0_EVENTS_COMPARE_0;
    NRF_TIMER0_NS->PUBLISH_COMPARE[3] = DPPI_PUBLISH_TIMER0_EVENTS_COMPARE_3;
    NRF_RADIO_NS->PUBLISH_END = DPPI_PUBLISH_RADIO_EVENTS_END;
    NRF_RADIO_NS->PUBLISH_BCMATCH = DPPI_PUBLISH_RADIO_EVENTS_BCMATCH;
    NRF_RADIO_NS->PUBLISH_ADDRESS = DPPI_PUBLISH_RADIO_EVENTS_ADDRESS;
    NRF_RTC0_NS->PUBLISH_COMPARE[0] = DPPI_PUBLISH_RTC0_EVENTS_COMPARE_0;

    /* Enable channels we publish on */
    NRF_DPPIC_NS->CHENSET = DPPI_CH_ENABLE_ALL;

    /* Captures tx/rx start in timer0 cc 1 and tx/rx end in timer0 cc 2 */
    NRF_TIMER0_NS->SUBSCRIBE_CAPTURE[1] = DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE1(1);
    NRF_TIMER0_NS->SUBSCRIBE_CAPTURE[2] = DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE2(1);

    /* Set isr in vector table and enable interrupt */
#ifndef RIOT_VERSION
    NVIC_SetPriority(RADIO_IRQn, 0);
#endif
#if MYNEWT
    NVIC_SetVector(RADIO_IRQn, (uint32_t)ble_phy_isr);
#else
    ble_npl_hw_set_isr(RADIO_IRQn, ble_phy_isr);
#endif
    NVIC_EnableIRQ(RADIO_IRQn);

    /* Register phy statistics */
    if (!g_ble_phy_data.phy_stats_initialized) {
        rc = stats_init_and_reg(STATS_HDR(ble_phy_stats),
                                STATS_SIZE_INIT_PARMS(ble_phy_stats,
                                                      STATS_SIZE_32),
                                STATS_NAME_INIT_PARMS(ble_phy_stats),
                                "ble_phy");
        assert(rc == 0);

        g_ble_phy_data.phy_stats_initialized = 1;
    }

    return 0;
}

int
ble_phy_rx(void)
{
    /*
     * Check radio state.
     *
     * In case radio is now disabling we'll wait for it to finish, but if for
     * any reason it's just in idle state we proceed with RX as usual since
     * nRF52 radio can ramp-up from idle state as well.
     *
     * Note that TX and RX states values are the same except for 3rd bit so we
     * can make a shortcut here when checking for idle state.
     */
    nrf_wait_disabled();
    if ((NRF_RADIO_NS->STATE != RADIO_STATE_STATE_Disabled) &&
        ((NRF_RADIO_NS->STATE & 0x07) != RADIO_STATE_STATE_RxIdle)) {
        ble_phy_disable();
        STATS_INC(ble_phy_stats, radio_state_errs);
        return BLE_PHY_ERR_RADIO_STATE;
    }

    /* Make sure all interrupts are disabled */
    NRF_RADIO_NS->INTENCLR = NRF_RADIO_IRQ_MASK_ALL;

    /* Clear events prior to enabling receive */
    NRF_RADIO_NS->EVENTS_END = 0;
    NRF_RADIO_NS->EVENTS_DISABLED = 0;

    /* Setup for rx */
    ble_phy_rx_xcvr_setup();

    /* task to start RX should be subscribed here  */
    assert(NRF_RADIO_NS->SUBSCRIBE_RXEN & DPPI_SUBSCRIBE_RADIO_TASKS_RXEN(1));

    return 0;
}

#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
void
ble_phy_encrypt_enable(uint64_t pkt_counter, uint8_t *iv, uint8_t *key,
                       uint8_t is_master)
{
    memcpy(nrf_ccm_data.key, key, 16);
    nrf_ccm_data.pkt_counter = pkt_counter;
    memcpy(nrf_ccm_data.iv, iv, 8);
    nrf_ccm_data.dir_bit = is_master;
    g_ble_phy_data.phy_encrypted = 1;
    /* Enable the module (AAR cannot be on while CCM on) */
    NRF_AAR_NS->ENABLE = AAR_ENABLE_ENABLE_Disabled;
    NRF_CCM_NS->ENABLE = CCM_ENABLE_ENABLE_Enabled;
}

void
ble_phy_encrypt_set_pkt_cntr(uint64_t pkt_counter, int dir)
{
    nrf_ccm_data.pkt_counter = pkt_counter;
    nrf_ccm_data.dir_bit = dir;
}

void
ble_phy_encrypt_disable(void)
{
    NRF_CCM_NS->SUBSCRIBE_CRYPT = DPPI_SUBSCRIBE_CCM_TASKS_CRYPT(0);
    NRF_CCM_NS->TASKS_STOP = 1;
    NRF_CCM_NS->EVENTS_ERROR = 0;
    NRF_CCM_NS->ENABLE = CCM_ENABLE_ENABLE_Disabled;

    g_ble_phy_data.phy_encrypted = 0;
}
#endif

void
ble_phy_set_txend_cb(ble_phy_tx_end_func txend_cb, void *arg)
{
    /* Set transmit end callback and arg */
    g_ble_phy_data.txend_cb = txend_cb;
    g_ble_phy_data.txend_arg = arg;
}

int
ble_phy_tx_set_start_time(uint32_t cputime, uint8_t rem_usecs)
{
    int rc;

    ble_phy_trace_u32x2(BLE_PHY_TRACE_ID_START_TX, cputime, rem_usecs);

#if (BLE_LL_BT5_PHY_SUPPORTED == 1)
    ble_phy_mode_apply(g_ble_phy_data.phy_tx_phy_mode);
#endif

    /* XXX: This should not be necessary, but paranoia is good! */
    /* Clear timer0 compare to RXEN since we are transmitting */
    NRF_RADIO_NS->SUBSCRIBE_RXEN = DPPI_SUBSCRIBE_RADIO_TASKS_RXEN(0);

    if (ble_phy_set_start_time(cputime, rem_usecs, true) != 0) {
        STATS_INC(ble_phy_stats, tx_late);
        ble_phy_disable();
        rc = BLE_PHY_ERR_TX_LATE;
    } else {
        /* Enable PPI to automatically start TXEN */
        NRF_RADIO_NS->SUBSCRIBE_TXEN = DPPI_SUBSCRIBE_RADIO_TASKS_TXEN(1);
        rc = 0;
    }
    return rc;
}

int
ble_phy_rx_set_start_time(uint32_t cputime, uint8_t rem_usecs)
{
    bool late = false;
    int rc = 0;

    ble_phy_trace_u32x2(BLE_PHY_TRACE_ID_START_RX, cputime, rem_usecs);

#if (BLE_LL_BT5_PHY_SUPPORTED == 1)
    ble_phy_mode_apply(g_ble_phy_data.phy_rx_phy_mode);
#endif

    /* XXX: This should not be necessary, but paranoia is good! */
    /* Clear timer0 compare to TXEN since we are transmitting */
    NRF_RADIO_NS->SUBSCRIBE_TXEN = DPPI_SUBSCRIBE_RADIO_TASKS_TXEN(0);

    if (ble_phy_set_start_time(cputime, rem_usecs, false) != 0) {
        STATS_INC(ble_phy_stats, rx_late);

        /* We're late so let's just try to start RX as soon as possible */
        ble_phy_set_start_now();

        late = true;
    }

    /* Enable PPI to automatically start RXEN */
    NRF_RADIO_NS->SUBSCRIBE_RXEN = DPPI_SUBSCRIBE_RADIO_TASKS_RXEN(1);

    /* Start rx */
    rc = ble_phy_rx();

    /*
     * If we enabled receiver but were late, let's return proper error code so
     * caller can handle this.
     */
    if (!rc && late) {
        rc = BLE_PHY_ERR_RX_LATE;
    }

    return rc;
}

int
ble_phy_tx(ble_phy_tx_pducb_t pducb, void *pducb_arg, uint8_t end_trans)
{
    int rc;
    uint8_t *dptr;
    uint8_t *pktptr;
    uint8_t payload_len;
    uint8_t hdr_byte;
    uint32_t state;
    uint32_t shortcuts;

    if (g_ble_phy_data.phy_transition_late) {
        ble_phy_disable();
        STATS_INC(ble_phy_stats, tx_late);
        return BLE_PHY_ERR_TX_LATE;
    }

    /*
     * This check is to make sure that the radio is not in a state where
     * it is moving to disabled state. If so, let it get there.
     */
    nrf_wait_disabled();

    /*
     * XXX: Although we may not have to do this here, I clear all the PPI
     * that should not be used when transmitting. Some of them are only enabled
     * if encryption and/or privacy is on, but I dont care. Better to be
     * paranoid, and if you are going to clear one, might as well clear them
     * all.
     */
    NRF_TIMER0_NS->SUBSCRIBE_CAPTURE[3] = DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE3(0);
    NRF_RADIO_NS->SUBSCRIBE_DISABLE = DPPI_SUBSCRIBE_RADIO_TASKS_DISABLE(0);
    NRF_AAR_NS->SUBSCRIBE_START = DPPI_SUBSCRIBE_AAR_TASKS_START(0);
    NRF_CCM_NS->SUBSCRIBE_CRYPT = DPPI_SUBSCRIBE_CCM_TASKS_CRYPT(0);

#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
    if (g_ble_phy_data.phy_encrypted) {
        dptr = (uint8_t *)&g_ble_phy_enc_buf[0];
        pktptr = (uint8_t *)&g_ble_phy_tx_buf[0];
        NRF_CCM_NS->SHORTS = CCM_SHORTS_ENDKSGEN_CRYPT_Msk;
        NRF_CCM_NS->INPTR = (uint32_t)dptr;
        NRF_CCM_NS->OUTPTR = (uint32_t)pktptr;
        NRF_CCM_NS->SCRATCHPTR = (uint32_t)&nrf_encrypt_scratchpad[0];
        NRF_CCM_NS->EVENTS_ERROR = 0;
        NRF_CCM_NS->MODE = CCM_MODE_LENGTH_Msk | ble_phy_get_ccm_datarate();
        NRF_CCM_NS->CNFPTR = (uint32_t)&nrf_ccm_data;
    } else {
#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
        NRF_AAR_NS->IRKPTR = (uint32_t)&g_nrf_irk_list[0];
#endif
        dptr = (uint8_t *)&g_ble_phy_tx_buf[0];
        pktptr = dptr;
    }
#else
    dptr = (uint8_t *)&g_ble_phy_tx_buf[0];
    pktptr = dptr;
#endif

    /* Set PDU payload */
    payload_len = pducb(&dptr[3], pducb_arg, &hdr_byte);

    /* RAM representation has S0, LENGTH and S1 fields. (3 bytes) */
    dptr[0] = hdr_byte;
    dptr[1] = payload_len;
    dptr[2] = 0;

#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION)
    /* Start key-stream generation and encryption (via short) */
    if (g_ble_phy_data.phy_encrypted) {
        NRF_CCM_NS->TASKS_KSGEN = 1;
    }
#endif

    NRF_RADIO_NS->PACKETPTR = (uint32_t)pktptr;

    /* Clear the ready, end and disabled events */
    NRF_RADIO_NS->EVENTS_READY = 0;
    NRF_RADIO_NS->EVENTS_END = 0;
    NRF_RADIO_NS->EVENTS_DISABLED = 0;

    /* Enable shortcuts for transmit start/end. */
    shortcuts = RADIO_SHORTS_END_DISABLE_Msk | RADIO_SHORTS_READY_START_Msk;
    NRF_RADIO_NS->SHORTS = shortcuts;
    NRF_RADIO_NS->INTENSET = RADIO_INTENSET_DISABLED_Msk;

    /* Set the PHY transition */
    g_ble_phy_data.phy_transition = end_trans;

    /* Set transmitted payload length */
    g_ble_phy_data.phy_tx_pyld_len = payload_len;

    /* If we already started transmitting, abort it! */
    state = NRF_RADIO_NS->STATE;
    if (state != RADIO_STATE_STATE_Tx) {
        /* Set phy state to transmitting and count packet statistics */
        g_ble_phy_data.phy_state = BLE_PHY_STATE_TX;
        STATS_INC(ble_phy_stats, tx_good);
        STATS_INCN(ble_phy_stats, tx_bytes, payload_len + BLE_LL_PDU_HDR_LEN);
        rc = BLE_ERR_SUCCESS;
    } else {
        ble_phy_disable();
        STATS_INC(ble_phy_stats, tx_late);
        rc = BLE_PHY_ERR_RADIO_STATE;
    }

    return rc;
}

int
ble_phy_txpwr_set(int dbm)
{
    /* "Rail" power level if outside supported range */
    dbm = ble_phy_txpower_round(dbm);

    NRF_RADIO_NS->TXPOWER = dbm;
    g_ble_phy_data.phy_txpwr_dbm = dbm;

    return 0;
}

int
ble_phy_txpower_round(int dbm)
{
    /* "Rail" power level if outside supported range */

    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_0dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_0dBm;
    }

    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg1dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Neg1dBm;
    }

    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg2dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Neg2dBm;
    }

    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg3dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Neg4dBm;
    }

    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg4dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Neg4dBm;
    }

    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg5dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Neg5dBm;
    }

    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg6dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Neg6dBm;
    }

    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg7dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Neg7dBm;
    }

    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg8dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Neg8dBm;
    }

    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg12dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Neg12dBm;
    }

    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg16dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Neg16dBm;
    }

    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg20dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Neg20dBm;
    }

    if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg40dBm) {
        return (int8_t)RADIO_TXPOWER_TXPOWER_Neg40dBm;
    }

    return (int8_t)RADIO_TXPOWER_TXPOWER_Neg40dBm;
}

static int
ble_phy_set_access_addr(uint32_t access_addr)
{
    NRF_RADIO_NS->BASE0 = (access_addr << 8);
    NRF_RADIO_NS->PREFIX0 = (NRF_RADIO_NS->PREFIX0 & 0xFFFFFF00) | (access_addr >> 24);

    g_ble_phy_data.phy_access_address = access_addr;

    return 0;
}

int
ble_phy_txpwr_get(void)
{
    return g_ble_phy_data.phy_txpwr_dbm;
}

void
ble_phy_set_rx_pwr_compensation(int8_t compensation)
{
    g_ble_phy_data.rx_pwr_compensation = compensation;
}

int
ble_phy_setchan(uint8_t chan, uint32_t access_addr, uint32_t crcinit)
{
    assert(chan < BLE_PHY_NUM_CHANS);

    /* Check for valid channel range */
    if (chan >= BLE_PHY_NUM_CHANS) {
        return BLE_PHY_ERR_INV_PARAM;
    }

    /* Set current access address */
    ble_phy_set_access_addr(access_addr);

    /* Configure crcinit */
    NRF_RADIO_NS->CRCINIT = crcinit;

    /* Set the frequency and the data whitening initial value */
    g_ble_phy_data.phy_chan = chan;
    NRF_RADIO_NS->FREQUENCY = g_ble_phy_chan_freq[chan];
    NRF_RADIO_NS->DATAWHITEIV = chan;

    return 0;
}

/**
 * Stop the timer used to count microseconds when using RTC for cputime
 */
static void
ble_phy_stop_usec_timer(void)
{
    NRF_TIMER0_NS->TASKS_STOP = 1;
    NRF_TIMER0_NS->TASKS_SHUTDOWN = 1;
    NRF_RTC0_NS->EVTENCLR = RTC_EVTENSET_COMPARE0_Msk;
}

/**
 * ble phy disable irq and ppi
 *
 * This routine is to be called when reception was stopped due to either a
 * wait for response timeout or a packet being received and the phy is to be
 * restarted in receive mode. Generally, the disable routine is called to stop
 * the phy.
 */
static void
ble_phy_disable_irq_and_ppi(void)
{
    NRF_RADIO_NS->INTENCLR = NRF_RADIO_IRQ_MASK_ALL;
    NRF_RADIO_NS->SHORTS = 0;
    NRF_RADIO_NS->TASKS_DISABLE = 1;

    NRF_TIMER0_NS->SUBSCRIBE_START = DPPI_SUBSCRIBE_TIMER0_TASKS_START(0);
    NRF_TIMER0_NS->SUBSCRIBE_CAPTURE[3] = DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE3(0);
    NRF_RADIO_NS->SUBSCRIBE_DISABLE = DPPI_SUBSCRIBE_RADIO_TASKS_DISABLE(0);
    NRF_RADIO_NS->SUBSCRIBE_TXEN = DPPI_SUBSCRIBE_RADIO_TASKS_TXEN(0);
    NRF_RADIO_NS->SUBSCRIBE_RXEN = DPPI_SUBSCRIBE_RADIO_TASKS_RXEN(0);
    NRF_AAR_NS->SUBSCRIBE_START = DPPI_SUBSCRIBE_AAR_TASKS_START(0);
    NRF_CCM_NS->SUBSCRIBE_CRYPT = DPPI_SUBSCRIBE_CCM_TASKS_CRYPT(0);

    NVIC_ClearPendingIRQ(RADIO_IRQn);
    g_ble_phy_data.phy_state = BLE_PHY_STATE_IDLE;
}

void
ble_phy_restart_rx(void)
{
    ble_phy_stop_usec_timer();
    ble_phy_disable_irq_and_ppi();

    ble_phy_set_start_now();
    /* Enable PPI to automatically start RXEN */
    NRF_RADIO_NS->SUBSCRIBE_RXEN = DPPI_SUBSCRIBE_RADIO_TASKS_RXEN(1);

    ble_phy_rx();
}

void
ble_phy_disable(void)
{
    ble_phy_trace_void(BLE_PHY_TRACE_ID_DISABLE);

    ble_phy_stop_usec_timer();
    ble_phy_disable_irq_and_ppi();
}

uint32_t
ble_phy_access_addr_get(void)
{
    return g_ble_phy_data.phy_access_address;
}

int
ble_phy_state_get(void)
{
    return g_ble_phy_data.phy_state;
}

int
ble_phy_rx_started(void)
{
    return g_ble_phy_data.phy_rx_started;
}

uint8_t
ble_phy_xcvr_state_get(void)
{
    uint32_t state;
    state = NRF_RADIO_NS->STATE;
    return (uint8_t)state;
}

uint8_t
ble_phy_max_data_pdu_pyld(void)
{
    return BLE_LL_DATA_PDU_MAX_PYLD;
}

#if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY)
void
ble_phy_resolv_list_enable(void)
{
    NRF_AAR_NS->NIRK = (uint32_t)g_nrf_num_irks;
    g_ble_phy_data.phy_privacy = 1;
}

void
ble_phy_resolv_list_disable(void)
{
    g_ble_phy_data.phy_privacy = 0;
}
#endif

#if MYNEWT_VAL(BLE_LL_DTM)
void
ble_phy_enable_dtm(void)
{
    /* When DTM is enabled we need to disable whitening as per
     * Bluetooth v5.0 Vol 6. Part F. 4.1.1
     */
    NRF_RADIO_NS->PCNF1 &= ~RADIO_PCNF1_WHITEEN_Msk;
}

void
ble_phy_disable_dtm(void)
{
    /* Enable whitening */
    NRF_RADIO_NS->PCNF1 |= RADIO_PCNF1_WHITEEN_Msk;
}
#endif

void
ble_phy_rfclk_enable(void)
{
#if MYNEWT
    nrf5340_net_clock_hfxo_request();
#else
    NRF_CLOCK_NS->TASKS_HFCLKSTART = 1;
#endif
}

void
ble_phy_rfclk_disable(void)
{
#if MYNEWT
    nrf5340_net_clock_hfxo_release();
#else
    NRF_CLOCK_NS->TASKS_HFCLKSTOP = 1;
#endif
}