ref: 0.12.0
src/libs/mynewt-nimble/nimble/drivers/nrf5340/src/ble_phy.c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 |
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ #include <stdint.h> #include <string.h> #include <assert.h> #include <syscfg/syscfg.h> #include <os/os.h> #include <nimble/ble.h> #include <nimble/nimble_opt.h> #include <nimble/nimble_npl.h> #include <controller/ble_phy.h> #include <ble/xcvr.h> #include <controller/ble_phy_trace.h> #include <controller/ble_ll.h> #include <mcu/nrf5340_net_clock.h> #include <mcu/cmsis_nvic.h> /* * NOTE: This code uses 0-5 DPPI channels so care should be taken when using * DPPI somewhere else. * TODO maybe we could reduce number of used channels if we reuse same channel * for mutually exclusive events but for now make it simpler to debug. */ #define DPPI_CH_TIMER0_EVENTS_COMPARE_0 0 #define DPPI_CH_TIMER0_EVENTS_COMPARE_3 1 #define DPPI_CH_RADIO_EVENTS_END 2 #define DPPI_CH_RADIO_EVENTS_BCMATCH 3 #define DPPI_CH_RADIO_EVENTS_ADDRESS 4 #define DPPI_CH_RTC0_EVENTS_COMPARE_0 5 #define DPPI_CH_ENABLE_ALL (DPPIC_CHEN_CH0_Msk | DPPIC_CHEN_CH1_Msk | DPPIC_CHEN_CH2_Msk | \ DPPIC_CHEN_CH3_Msk | DPPIC_CHEN_CH4_Msk | DPPIC_CHEN_CH5_Msk) #define DPPI_PUBLISH_TIMER0_EVENTS_COMPARE_0 ((DPPI_CH_TIMER0_EVENTS_COMPARE_0 << TIMER_PUBLISH_COMPARE_CHIDX_Pos) | \ (TIMER_PUBLISH_COMPARE_EN_Enabled << TIMER_PUBLISH_COMPARE_EN_Pos)) #define DPPI_PUBLISH_TIMER0_EVENTS_COMPARE_3 ((DPPI_CH_TIMER0_EVENTS_COMPARE_3 << TIMER_PUBLISH_COMPARE_CHIDX_Pos) | \ (TIMER_PUBLISH_COMPARE_EN_Enabled << TIMER_PUBLISH_COMPARE_EN_Pos)) #define DPPI_PUBLISH_RADIO_EVENTS_END ((DPPI_CH_RADIO_EVENTS_END << RADIO_PUBLISH_END_CHIDX_Pos) | \ (RADIO_PUBLISH_END_EN_Enabled << RADIO_PUBLISH_END_EN_Pos)) #define DPPI_PUBLISH_RADIO_EVENTS_BCMATCH ((DPPI_CH_RADIO_EVENTS_BCMATCH << RADIO_PUBLISH_BCMATCH_CHIDX_Pos) | \ (RADIO_PUBLISH_BCMATCH_EN_Enabled << RADIO_PUBLISH_BCMATCH_EN_Pos)) #define DPPI_PUBLISH_RADIO_EVENTS_ADDRESS ((DPPI_CH_RADIO_EVENTS_ADDRESS << RADIO_PUBLISH_ADDRESS_CHIDX_Pos) | \ (RADIO_PUBLISH_ADDRESS_EN_Enabled << RADIO_PUBLISH_ADDRESS_EN_Pos)) #define DPPI_PUBLISH_RTC0_EVENTS_COMPARE_0 ((DPPI_CH_RTC0_EVENTS_COMPARE_0 << RTC_PUBLISH_COMPARE_CHIDX_Pos) | \ (RTC_PUBLISH_COMPARE_EN_Enabled << RTC_PUBLISH_COMPARE_EN_Pos)) #define DPPI_SUBSCRIBE_TIMER0_TASKS_START(_enable) ((DPPI_CH_RTC0_EVENTS_COMPARE_0 << TIMER_SUBSCRIBE_START_CHIDX_Pos) | \ ((_enable) << TIMER_SUBSCRIBE_START_EN_Pos)) #define DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE1(_enable) ((DPPI_CH_RADIO_EVENTS_ADDRESS << TIMER_SUBSCRIBE_CAPTURE_CHIDX_Pos) | \ ((_enable) << TIMER_SUBSCRIBE_CAPTURE_EN_Pos)) #define DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE2(_enable) ((DPPI_CH_RADIO_EVENTS_END << TIMER_SUBSCRIBE_CAPTURE_CHIDX_Pos) | \ ((_enable) << TIMER_SUBSCRIBE_CAPTURE_EN_Pos)) #define DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE3(_enable) ((DPPI_CH_RADIO_EVENTS_ADDRESS << TIMER_SUBSCRIBE_CAPTURE_CHIDX_Pos) | \ ((_enable) << TIMER_SUBSCRIBE_CAPTURE_EN_Pos)) #define DPPI_SUBSCRIBE_RADIO_TASKS_DISABLE(_enable) ((DPPI_CH_TIMER0_EVENTS_COMPARE_3 << RADIO_SUBSCRIBE_DISABLE_CHIDX_Pos) | \ ((_enable) << RADIO_SUBSCRIBE_DISABLE_EN_Pos)) #define DPPI_SUBSCRIBE_RADIO_TASKS_RXEN(_enable) ((DPPI_CH_TIMER0_EVENTS_COMPARE_0 << RADIO_SUBSCRIBE_RXEN_CHIDX_Pos) | \ ((_enable) << RADIO_SUBSCRIBE_RXEN_EN_Pos)) #define DPPI_SUBSCRIBE_RADIO_TASKS_TXEN(_enable) ((DPPI_CH_TIMER0_EVENTS_COMPARE_0 << RADIO_SUBSCRIBE_TXEN_CHIDX_Pos) | \ ((_enable) << RADIO_SUBSCRIBE_TXEN_EN_Pos)) #define DPPI_SUBSCRIBE_AAR_TASKS_START(_enable) ((DPPI_CH_RADIO_EVENTS_BCMATCH << AAR_SUBSCRIBE_START_CHIDX_Pos) | \ ((_enable) << AAR_SUBSCRIBE_START_EN_Pos)) #define DPPI_SUBSCRIBE_CCM_TASKS_CRYPT(_enable) ((DPPI_CH_RADIO_EVENTS_ADDRESS << CCM_SUBSCRIBE_CRYPT_CHIDX_Pos) | \ ((_enable) << CCM_SUBSCRIBE_CRYPT_EN_Pos)) extern uint8_t g_nrf_num_irks; extern uint32_t g_nrf_irk_list[]; /* To disable all radio interrupts */ #define NRF_RADIO_IRQ_MASK_ALL (0x34FF) /* * We configure the nrf with a 1 byte S0 field, 8 bit length field, and * zero bit S1 field. The preamble is 8 bits long. */ #define NRF_LFLEN_BITS (8) #define NRF_S0LEN (1) #define NRF_S1LEN_BITS (0) #define NRF_CILEN_BITS (2) #define NRF_TERMLEN_BITS (3) /* Maximum length of frames */ #define NRF_MAXLEN (255) #define NRF_BALEN (3) /* For base address of 3 bytes */ /* NRF_RADIO_NS->PCNF0 configuration values */ #define NRF_PCNF0 (NRF_LFLEN_BITS << RADIO_PCNF0_LFLEN_Pos) | \ (RADIO_PCNF0_S1INCL_Msk) | \ (NRF_S0LEN << RADIO_PCNF0_S0LEN_Pos) | \ (NRF_S1LEN_BITS << RADIO_PCNF0_S1LEN_Pos) #define NRF_PCNF0_1M (NRF_PCNF0) | \ (RADIO_PCNF0_PLEN_8bit << RADIO_PCNF0_PLEN_Pos) #define NRF_PCNF0_2M (NRF_PCNF0) | \ (RADIO_PCNF0_PLEN_16bit << RADIO_PCNF0_PLEN_Pos) #define NRF_PCNF0_CODED (NRF_PCNF0) | \ (RADIO_PCNF0_PLEN_LongRange << RADIO_PCNF0_PLEN_Pos) | \ (NRF_CILEN_BITS << RADIO_PCNF0_CILEN_Pos) | \ (NRF_TERMLEN_BITS << RADIO_PCNF0_TERMLEN_Pos) /* BLE PHY data structure */ struct ble_phy_obj { uint8_t phy_stats_initialized; int8_t phy_txpwr_dbm; uint8_t phy_chan; uint8_t phy_state; uint8_t phy_transition; uint8_t phy_transition_late; uint8_t phy_rx_started; uint8_t phy_encrypted; uint8_t phy_privacy; uint8_t phy_tx_pyld_len; uint8_t phy_cur_phy_mode; uint8_t phy_tx_phy_mode; uint8_t phy_rx_phy_mode; uint8_t phy_bcc_offset; int8_t rx_pwr_compensation; uint32_t phy_aar_scratch; uint32_t phy_access_address; struct ble_mbuf_hdr rxhdr; void *txend_arg; ble_phy_tx_end_func txend_cb; uint32_t phy_start_cputime; }; struct ble_phy_obj g_ble_phy_data; /* XXX: if 27 byte packets desired we can make this smaller */ /* Global transmit/receive buffer */ static uint32_t g_ble_phy_tx_buf[(BLE_PHY_MAX_PDU_LEN + 3) / 4]; static uint32_t g_ble_phy_rx_buf[(BLE_PHY_MAX_PDU_LEN + 3) / 4]; #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION) /* Make sure word-aligned for faster copies */ static uint32_t g_ble_phy_enc_buf[(BLE_PHY_MAX_PDU_LEN + 3) / 4]; #endif /* RF center frequency for each channel index (offset from 2400 MHz) */ static const uint8_t g_ble_phy_chan_freq[BLE_PHY_NUM_CHANS] = { 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, /* 0-9 */ 24, 28, 30, 32, 34, 36, 38, 40, 42, 44, /* 10-19 */ 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, /* 20-29 */ 66, 68, 70, 72, 74, 76, 78, 2, 26, 80, /* 30-39 */ }; #if (BLE_LL_BT5_PHY_SUPPORTED == 1) /* packet start offsets (in usecs) */ static const uint16_t g_ble_phy_mode_pkt_start_off[BLE_PHY_NUM_MODE] = { [BLE_PHY_MODE_1M] = 40, [BLE_PHY_MODE_2M] = 24, [BLE_PHY_MODE_CODED_125KBPS] = 376, [BLE_PHY_MODE_CODED_500KBPS] = 376 }; #endif /* Various radio timings */ /* Radio ramp-up times in usecs (fast mode) */ #define BLE_PHY_T_TXENFAST (XCVR_TX_RADIO_RAMPUP_USECS) #define BLE_PHY_T_RXENFAST (XCVR_RX_RADIO_RAMPUP_USECS) /* delay between EVENTS_READY and start of tx */ static const uint8_t g_ble_phy_t_txdelay[BLE_PHY_NUM_MODE] = { [BLE_PHY_MODE_1M] = 4, [BLE_PHY_MODE_2M] = 3, [BLE_PHY_MODE_CODED_125KBPS] = 5, [BLE_PHY_MODE_CODED_500KBPS] = 5 }; /* delay between EVENTS_END and end of txd packet */ static const uint8_t g_ble_phy_t_txenddelay[BLE_PHY_NUM_MODE] = { [BLE_PHY_MODE_1M] = 4, [BLE_PHY_MODE_2M] = 3, [BLE_PHY_MODE_CODED_125KBPS] = 9, [BLE_PHY_MODE_CODED_500KBPS] = 3 }; /* delay between rxd access address (w/ TERM1 for coded) and EVENTS_ADDRESS */ static const uint8_t g_ble_phy_t_rxaddrdelay[BLE_PHY_NUM_MODE] = { [BLE_PHY_MODE_1M] = 6, [BLE_PHY_MODE_2M] = 2, [BLE_PHY_MODE_CODED_125KBPS] = 17, [BLE_PHY_MODE_CODED_500KBPS] = 17 }; /* delay between end of rxd packet and EVENTS_END */ static const uint8_t g_ble_phy_t_rxenddelay[BLE_PHY_NUM_MODE] = { [BLE_PHY_MODE_1M] = 6, [BLE_PHY_MODE_2M] = 2, [BLE_PHY_MODE_CODED_125KBPS] = 27, [BLE_PHY_MODE_CODED_500KBPS] = 22 }; /* Statistics */ STATS_SECT_START(ble_phy_stats) STATS_SECT_ENTRY(phy_isrs) STATS_SECT_ENTRY(tx_good) STATS_SECT_ENTRY(tx_fail) STATS_SECT_ENTRY(tx_late) STATS_SECT_ENTRY(tx_bytes) STATS_SECT_ENTRY(rx_starts) STATS_SECT_ENTRY(rx_aborts) STATS_SECT_ENTRY(rx_valid) STATS_SECT_ENTRY(rx_crc_err) STATS_SECT_ENTRY(rx_late) STATS_SECT_ENTRY(radio_state_errs) STATS_SECT_ENTRY(rx_hw_err) STATS_SECT_ENTRY(tx_hw_err) STATS_SECT_END STATS_SECT_DECL(ble_phy_stats) ble_phy_stats; STATS_NAME_START(ble_phy_stats) STATS_NAME(ble_phy_stats, phy_isrs) STATS_NAME(ble_phy_stats, tx_good) STATS_NAME(ble_phy_stats, tx_fail) STATS_NAME(ble_phy_stats, tx_late) STATS_NAME(ble_phy_stats, tx_bytes) STATS_NAME(ble_phy_stats, rx_starts) STATS_NAME(ble_phy_stats, rx_aborts) STATS_NAME(ble_phy_stats, rx_valid) STATS_NAME(ble_phy_stats, rx_crc_err) STATS_NAME(ble_phy_stats, rx_late) STATS_NAME(ble_phy_stats, radio_state_errs) STATS_NAME(ble_phy_stats, rx_hw_err) STATS_NAME(ble_phy_stats, tx_hw_err) STATS_NAME_END(ble_phy_stats) #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION) /* * Per nordic, the number of bytes needed for scratch is 16 + MAX_PKT_SIZE. * However, when I used a smaller size it still overwrote the scratchpad. Until * I figure this out I am just going to allocate 67 words so we have enough * space for 267 bytes of scratch. I used 268 bytes since not sure if this * needs to be aligned and burning a byte is no big deal. * *#define NRF_ENC_SCRATCH_WORDS (((MYNEWT_VAL(BLE_LL_MAX_PKT_SIZE) + 16) + 3) / 4) */ #define NRF_ENC_SCRATCH_WORDS (67) static uint32_t nrf_encrypt_scratchpad[NRF_ENC_SCRATCH_WORDS]; struct nrf_ccm_data { uint8_t key[16]; uint64_t pkt_counter; uint8_t dir_bit; uint8_t iv[8]; } __attribute__((packed)); static struct nrf_ccm_data nrf_ccm_data; #endif #if (BLE_LL_BT5_PHY_SUPPORTED == 1) uint32_t ble_phy_mode_pdu_start_off(int phy_mode) { return g_ble_phy_mode_pkt_start_off[phy_mode]; } static void ble_phy_mode_apply(uint8_t phy_mode) { if (phy_mode == g_ble_phy_data.phy_cur_phy_mode) { return; } switch (phy_mode) { case BLE_PHY_MODE_1M: NRF_RADIO_NS->MODE = RADIO_MODE_MODE_Ble_1Mbit; NRF_RADIO_NS->PCNF0 = NRF_PCNF0_1M; break; #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_2M_PHY) case BLE_PHY_MODE_2M: NRF_RADIO_NS->MODE = RADIO_MODE_MODE_Ble_2Mbit; NRF_RADIO_NS->PCNF0 = NRF_PCNF0_2M; break; #endif #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_CODED_PHY) case BLE_PHY_MODE_CODED_125KBPS: NRF_RADIO_NS->MODE = RADIO_MODE_MODE_Ble_LR125Kbit; NRF_RADIO_NS->PCNF0 = NRF_PCNF0_CODED; break; case BLE_PHY_MODE_CODED_500KBPS: NRF_RADIO_NS->MODE = RADIO_MODE_MODE_Ble_LR500Kbit; NRF_RADIO_NS->PCNF0 = NRF_PCNF0_CODED; break; #endif default: assert(0); } g_ble_phy_data.phy_cur_phy_mode = phy_mode; } #endif void ble_phy_mode_set(uint8_t tx_phy_mode, uint8_t rx_phy_mode) { g_ble_phy_data.phy_tx_phy_mode = tx_phy_mode; g_ble_phy_data.phy_rx_phy_mode = rx_phy_mode; } int ble_phy_get_cur_phy(void) { #if (BLE_LL_BT5_PHY_SUPPORTED == 1) switch (g_ble_phy_data.phy_cur_phy_mode) { case BLE_PHY_MODE_1M: return BLE_PHY_1M; case BLE_PHY_MODE_2M: return BLE_PHY_2M; case BLE_PHY_MODE_CODED_125KBPS: case BLE_PHY_MODE_CODED_500KBPS: return BLE_PHY_CODED; default: assert(0); return -1; } #else return BLE_PHY_1M; #endif } void ble_phy_rxpdu_copy(uint8_t *dptr, struct os_mbuf *rxpdu) { uint32_t rem_len; uint32_t copy_len; uint32_t block_len; uint32_t block_rem_len; void *dst; void *src; struct os_mbuf * om; /* Better be aligned */ assert(((uint32_t)dptr & 3) == 0); block_len = rxpdu->om_omp->omp_databuf_len; rem_len = OS_MBUF_PKTHDR(rxpdu)->omp_len; src = dptr; /* * Setup for copying from first mbuf which is shorter due to packet header * and extra leading space */ copy_len = block_len - rxpdu->om_pkthdr_len - 4; om = rxpdu; dst = om->om_data; while (true) { /* * Always copy blocks of length aligned to word size, only last mbuf * will have remaining non-word size bytes appended. */ block_rem_len = copy_len; copy_len = min(copy_len, rem_len); copy_len &= ~3; dst = om->om_data; om->om_len = copy_len; rem_len -= copy_len; block_rem_len -= copy_len; __asm__ volatile (".syntax unified \n" " mov r4, %[len] \n" " b 2f \n" "1: ldr r3, [%[src], %[len]] \n" " str r3, [%[dst], %[len]] \n" "2: subs %[len], #4 \n" " bpl 1b \n" " adds %[src], %[src], r4 \n" " adds %[dst], %[dst], r4 \n" : [dst] "+r" (dst), [src] "+r" (src), [len] "+r" (copy_len) : : "r3", "r4", "memory" ); if ((rem_len < 4) && (block_rem_len >= rem_len)) { break; } /* Move to next mbuf */ om = SLIST_NEXT(om, om_next); copy_len = block_len; } /* Copy remaining bytes, if any, to last mbuf */ om->om_len += rem_len; __asm__ volatile (".syntax unified \n" " b 2f \n" "1: ldrb r3, [%[src], %[len]] \n" " strb r3, [%[dst], %[len]] \n" "2: subs %[len], #1 \n" " bpl 1b \n" : [len] "+r" (rem_len) : [dst] "r" (dst), [src] "r" (src) : "r3", "memory" ); /* Copy header */ memcpy(BLE_MBUF_HDR_PTR(rxpdu), &g_ble_phy_data.rxhdr, sizeof(struct ble_mbuf_hdr)); } /** * Called when we want to wait if the radio is in either the rx or tx * disable states. We want to wait until that state is over before doing * anything to the radio */ static void nrf_wait_disabled(void) { uint32_t state; state = NRF_RADIO_NS->STATE; if (state != RADIO_STATE_STATE_Disabled) { if ((state == RADIO_STATE_STATE_RxDisable) || (state == RADIO_STATE_STATE_TxDisable)) { /* This will end within a short time (6 usecs). Just poll */ while (NRF_RADIO_NS->STATE == state) { /* If this fails, something is really wrong. Should last * no more than 6 usecs */ } } } } static int ble_phy_set_start_time(uint32_t cputime, uint8_t rem_usecs, bool tx) { uint32_t next_cc; uint32_t cur_cc; uint32_t cntr; uint32_t delta; /* * We need to adjust start time to include radio ramp-up and TX pipeline * delay (the latter only if applicable, so only for TX). * * Radio ramp-up time is 40 usecs and TX delay is 3 or 5 usecs depending on * phy, thus we'll offset RTC by 2 full ticks (61 usecs) and then compensate * using TIMER0 with 1 usec precision. */ cputime -= 2; rem_usecs += 61; if (tx) { rem_usecs -= BLE_PHY_T_TXENFAST; rem_usecs -= g_ble_phy_t_txdelay[g_ble_phy_data.phy_cur_phy_mode]; } else { rem_usecs -= BLE_PHY_T_RXENFAST; } /* * rem_usecs will be no more than 2 ticks, but if it is more than single * tick then we should better count one more low-power tick rather than * 30 high-power usecs. Also make sure we don't set TIMER0 CC to 0 as the * compare won't occur. */ if (rem_usecs > 30) { cputime++; rem_usecs -= 30; } /* * Can we set the RTC compare to start TIMER0? We can do it if: * a) Current compare value is not N+1 or N+2 ticks from current * counter. * b) The value we want to set is not at least N+2 from current * counter. * * NOTE: since the counter can tick 1 while we do these calculations we * need to account for it. */ next_cc = cputime & 0xffffff; cur_cc = NRF_RTC0_NS->CC[0]; cntr = NRF_RTC0_NS->COUNTER; delta = (cur_cc - cntr) & 0xffffff; if ((delta <= 3) && (delta != 0)) { return -1; } delta = (next_cc - cntr) & 0xffffff; if ((delta & 0x800000) || (delta < 3)) { return -1; } /* Clear and set TIMER0 to fire off at proper time */ NRF_TIMER0_NS->TASKS_CLEAR = 1; NRF_TIMER0_NS->CC[0] = rem_usecs; NRF_TIMER0_NS->EVENTS_COMPARE[0] = 0; /* Set RTC compare to start TIMER0 */ NRF_RTC0_NS->EVENTS_COMPARE[0] = 0; NRF_RTC0_NS->CC[0] = next_cc; NRF_RTC0_NS->EVTENSET = RTC_EVTENSET_COMPARE0_Msk; /* Enable PPI */ NRF_TIMER0_NS->SUBSCRIBE_START = DPPI_SUBSCRIBE_TIMER0_TASKS_START(1); /* Store the cputime at which we set the RTC */ g_ble_phy_data.phy_start_cputime = cputime; return 0; } static int ble_phy_set_start_now(void) { os_sr_t sr; uint32_t now; OS_ENTER_CRITICAL(sr); /* * Set TIMER0 to fire immediately. We can't set CC to 0 as compare will not * occur in such case. */ NRF_TIMER0_NS->TASKS_CLEAR = 1; NRF_TIMER0_NS->CC[0] = 1; NRF_TIMER0_NS->EVENTS_COMPARE[0] = 0; /* * Set RTC compare to start TIMER0. We need to set it to at least N+2 ticks * from current value to guarantee triggering compare event, but let's set * it to N+3 to account for possible extra tick on RTC0 during these * operations. */ now = os_cputime_get32(); NRF_RTC0_NS->EVENTS_COMPARE[0] = 0; NRF_RTC0_NS->CC[0] = now + 3; NRF_RTC0_NS->EVTENSET = RTC_EVTENSET_COMPARE0_Msk; /* Enable PPI */ NRF_TIMER0_NS->SUBSCRIBE_START = DPPI_SUBSCRIBE_TIMER0_TASKS_START(1); /* * Store the cputime at which we set the RTC * * XXX Compare event may be triggered on previous CC value (if it was set to * less than N+2) so in rare cases actual start time may be 2 ticks earlier * than what we expect. Since this is only used on RX, it may cause AUX scan * to be scheduled 1 or 2 ticks too late so we'll miss it - it's acceptable * for now. */ g_ble_phy_data.phy_start_cputime = now + 3; OS_EXIT_CRITICAL(sr); return 0; } void ble_phy_wfr_enable(int txrx, uint8_t tx_phy_mode, uint32_t wfr_usecs) { uint32_t end_time; uint8_t phy; phy = g_ble_phy_data.phy_cur_phy_mode; if (txrx == BLE_PHY_WFR_ENABLE_TXRX) { /* RX shall start exactly T_IFS after TX end captured in CC[2] */ end_time = NRF_TIMER0_NS->CC[2] + BLE_LL_IFS; /* Adjust for delay between EVENT_END and actual TX end time */ end_time += g_ble_phy_t_txenddelay[tx_phy_mode]; /* Wait a bit longer due to allowed active clock accuracy */ end_time += 2; /* * It's possible that we'll capture PDU start time at the end of timer * cycle and since wfr expires at the beginning of calculated timer * cycle it can be almost 1 usec too early. Let's compensate for this * by waiting 1 usec more. */ end_time += 1; } else { /* * RX shall start no later than wfr_usecs after RX enabled. * CC[0] is the time of RXEN so adjust for radio ram-up. * Do not add jitter since this is already covered by LL. */ end_time = NRF_TIMER0_NS->CC[0] + BLE_PHY_T_RXENFAST + wfr_usecs; } /* * Note: on LE Coded EVENT_ADDRESS is fired after TERM1 is received, so * we are actually calculating relative to start of packet payload * which is fine. */ /* Adjust for receiving access address since this triggers EVENT_ADDRESS */ end_time += ble_phy_mode_pdu_start_off(phy); /* Adjust for delay between actual access address RX and EVENT_ADDRESS */ end_time += g_ble_phy_t_rxaddrdelay[phy]; /* wfr_secs is the time from rxen until timeout */ NRF_TIMER0_NS->CC[3] = end_time; NRF_TIMER0_NS->EVENTS_COMPARE[3] = 0; /* Subscribe for wait for response events */ NRF_TIMER0_NS->SUBSCRIBE_CAPTURE[3] = DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE3(1); NRF_RADIO_NS->SUBSCRIBE_DISABLE = DPPI_SUBSCRIBE_RADIO_TASKS_DISABLE(1); /* Enable the disabled interrupt so we time out on events compare */ NRF_RADIO_NS->INTENSET = RADIO_INTENSET_DISABLED_Msk; /* * It may happen that if CPU is halted for a brief moment (e.g. during flash * erase or write), TIMER0 already counted past CC[3] and thus wfr will not * fire as expected. In case this happened, let's just disable PPIs for wfr * and trigger wfr manually (i.e. disable radio). * * Note that the same applies to RX start time set in CC[0] but since it * should fire earlier than wfr, fixing wfr is enough. * * CC[1] is only used as a reference on RX start, we do not need it here so * it can be used to read TIMER0 counter. */ NRF_TIMER0_NS->TASKS_CAPTURE[1] = 1; if (NRF_TIMER0_NS->CC[1] > NRF_TIMER0_NS->CC[3]) { /* Unsubscribe from wfr events */ NRF_TIMER0_NS->SUBSCRIBE_CAPTURE[3] = DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE3(0); NRF_RADIO_NS->SUBSCRIBE_DISABLE = DPPI_SUBSCRIBE_RADIO_TASKS_DISABLE(0); NRF_RADIO_NS->TASKS_DISABLE = 1; } } #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION) static uint32_t ble_phy_get_ccm_datarate(void) { #if BLE_LL_BT5_PHY_SUPPORTED switch (g_ble_phy_data.phy_cur_phy_mode) { case BLE_PHY_MODE_1M: return CCM_MODE_DATARATE_1Mbit << CCM_MODE_DATARATE_Pos; case BLE_PHY_MODE_2M: return CCM_MODE_DATARATE_2Mbit << CCM_MODE_DATARATE_Pos; #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_CODED_PHY) case BLE_PHY_MODE_CODED_125KBPS: return CCM_MODE_DATARATE_125Kbps << CCM_MODE_DATARATE_Pos; case BLE_PHY_MODE_CODED_500KBPS: return CCM_MODE_DATARATE_500Kbps << CCM_MODE_DATARATE_Pos; #endif } assert(0); return 0; #else return CCM_MODE_DATARATE_1Mbit << CCM_MODE_DATARATE_Pos; #endif } #endif /** * Setup transceiver for receive. */ static void ble_phy_rx_xcvr_setup(void) { uint8_t *dptr; dptr = (uint8_t *)&g_ble_phy_rx_buf[0]; dptr += 3; #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION) if (g_ble_phy_data.phy_encrypted) { NRF_RADIO_NS->PACKETPTR = (uint32_t)&g_ble_phy_enc_buf[0]; NRF_CCM_NS->INPTR = (uint32_t)&g_ble_phy_enc_buf[0]; NRF_CCM_NS->OUTPTR = (uint32_t)dptr; NRF_CCM_NS->SCRATCHPTR = (uint32_t)&nrf_encrypt_scratchpad[0]; NRF_CCM_NS->MODE = CCM_MODE_LENGTH_Msk | CCM_MODE_MODE_Decryption | ble_phy_get_ccm_datarate(); NRF_CCM_NS->CNFPTR = (uint32_t)&nrf_ccm_data; NRF_CCM_NS->SHORTS = 0; NRF_CCM_NS->EVENTS_ERROR = 0; NRF_CCM_NS->EVENTS_ENDCRYPT = 0; NRF_CCM_NS->TASKS_KSGEN = 1; /* Subscribe to radio address event */ NRF_CCM_NS->SUBSCRIBE_CRYPT = DPPI_SUBSCRIBE_CCM_TASKS_CRYPT(1); } else { NRF_RADIO_NS->PACKETPTR = (uint32_t)dptr; } #else NRF_RADIO_NS->PACKETPTR = (uint32_t)dptr; #endif #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY) if (g_ble_phy_data.phy_privacy) { NRF_AAR_NS->ENABLE = AAR_ENABLE_ENABLE_Enabled; NRF_AAR_NS->IRKPTR = (uint32_t)&g_nrf_irk_list[0]; NRF_AAR_NS->SCRATCHPTR = (uint32_t)&g_ble_phy_data.phy_aar_scratch; NRF_AAR_NS->EVENTS_END = 0; NRF_AAR_NS->EVENTS_RESOLVED = 0; NRF_AAR_NS->EVENTS_NOTRESOLVED = 0; } else { if (g_ble_phy_data.phy_encrypted == 0) { NRF_AAR_NS->ENABLE = AAR_ENABLE_ENABLE_Disabled; } } #endif /* Turn off trigger TXEN on output compare match and AAR on bcmatch */ NRF_RADIO_NS->SUBSCRIBE_TXEN = DPPI_SUBSCRIBE_RADIO_TASKS_TXEN(0); NRF_AAR_NS->SUBSCRIBE_START = DPPI_SUBSCRIBE_AAR_TASKS_START(0); /* Reset the rx started flag. Used for the wait for response */ g_ble_phy_data.phy_rx_started = 0; g_ble_phy_data.phy_state = BLE_PHY_STATE_RX; #if BLE_LL_BT5_PHY_SUPPORTED /* * On Coded PHY there are CI and TERM1 fields before PDU starts so we need * to take this into account when setting up BCC. */ if (g_ble_phy_data.phy_cur_phy_mode == BLE_PHY_MODE_CODED_125KBPS || g_ble_phy_data.phy_cur_phy_mode == BLE_PHY_MODE_CODED_500KBPS) { g_ble_phy_data.phy_bcc_offset = 5; } else { g_ble_phy_data.phy_bcc_offset = 0; } #else g_ble_phy_data.phy_bcc_offset = 0; #endif /* I want to know when 1st byte received (after address) */ NRF_RADIO_NS->BCC = 8 + g_ble_phy_data.phy_bcc_offset; /* in bits */ NRF_RADIO_NS->EVENTS_ADDRESS = 0; NRF_RADIO_NS->EVENTS_DEVMATCH = 0; NRF_RADIO_NS->EVENTS_BCMATCH = 0; NRF_RADIO_NS->EVENTS_RSSIEND = 0; NRF_RADIO_NS->EVENTS_CRCOK = 0; NRF_RADIO_NS->SHORTS = RADIO_SHORTS_END_DISABLE_Msk | RADIO_SHORTS_READY_START_Msk | RADIO_SHORTS_ADDRESS_BCSTART_Msk | RADIO_SHORTS_ADDRESS_RSSISTART_Msk | RADIO_SHORTS_DISABLED_RSSISTOP_Msk; NRF_RADIO_NS->INTENSET = RADIO_INTENSET_ADDRESS_Msk; } /** * Called from interrupt context when the transmit ends * */ static void ble_phy_tx_end_isr(void) { uint8_t tx_phy_mode; uint8_t was_encrypted; uint8_t transition; uint32_t rx_time; uint32_t wfr_time; /* Store PHY on which we've just transmitted smth */ tx_phy_mode = g_ble_phy_data.phy_cur_phy_mode; /* If this transmission was encrypted we need to remember it */ was_encrypted = g_ble_phy_data.phy_encrypted; (void)was_encrypted; /* Better be in TX state! */ assert(g_ble_phy_data.phy_state == BLE_PHY_STATE_TX); /* Clear events and clear interrupt on disabled event */ NRF_RADIO_NS->EVENTS_DISABLED = 0; NRF_RADIO_NS->INTENCLR = RADIO_INTENCLR_DISABLED_Msk; NRF_RADIO_NS->EVENTS_END = 0; wfr_time = NRF_RADIO_NS->SHORTS; (void)wfr_time; #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION) /* * XXX: not sure what to do. We had a HW error during transmission. * For now I just count a stat but continue on like all is good. */ if (was_encrypted) { if (NRF_CCM_NS->EVENTS_ERROR) { STATS_INC(ble_phy_stats, tx_hw_err); NRF_CCM_NS->EVENTS_ERROR = 0; } } #endif /* Call transmit end callback */ if (g_ble_phy_data.txend_cb) { g_ble_phy_data.txend_cb(g_ble_phy_data.txend_arg); } transition = g_ble_phy_data.phy_transition; if (transition == BLE_PHY_TRANSITION_TX_RX) { #if (BLE_LL_BT5_PHY_SUPPORTED == 1) ble_phy_mode_apply(g_ble_phy_data.phy_rx_phy_mode); #endif /* Packet pointer needs to be reset. */ ble_phy_rx_xcvr_setup(); ble_phy_wfr_enable(BLE_PHY_WFR_ENABLE_TXRX, tx_phy_mode, 0); /* Schedule RX exactly T_IFS after TX end captured in CC[2] */ rx_time = NRF_TIMER0_NS->CC[2] + BLE_LL_IFS; /* Adjust for delay between EVENT_END and actual TX end time */ rx_time += g_ble_phy_t_txenddelay[tx_phy_mode]; /* Adjust for radio ramp-up */ rx_time -= BLE_PHY_T_RXENFAST; /* Start listening a bit earlier due to allowed active clock accuracy */ rx_time -= 2; NRF_TIMER0_NS->CC[0] = rx_time; NRF_TIMER0_NS->EVENTS_COMPARE[0] = 0; /* Start radio on timer */ NRF_RADIO_NS->SUBSCRIBE_RXEN = DPPI_SUBSCRIBE_RADIO_TASKS_RXEN(1); } else { NRF_TIMER0_NS->TASKS_STOP = 1; NRF_TIMER0_NS->TASKS_SHUTDOWN = 1; NRF_TIMER0_NS->SUBSCRIBE_CAPTURE[3] = DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE3(0); NRF_RADIO_NS->SUBSCRIBE_DISABLE = DPPI_SUBSCRIBE_RADIO_TASKS_DISABLE(0); NRF_RADIO_NS->SUBSCRIBE_TXEN = DPPI_SUBSCRIBE_RADIO_TASKS_TXEN(0); NRF_TIMER0_NS->SUBSCRIBE_START = DPPI_SUBSCRIBE_TIMER0_TASKS_START(0); assert(transition == BLE_PHY_TRANSITION_NONE); } } static inline uint8_t ble_phy_get_cur_rx_phy_mode(void) { uint8_t phy; phy = g_ble_phy_data.phy_cur_phy_mode; #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_CODED_PHY) /* * For Coded PHY mode can be set to either codings since actual coding is * set in packet header. However, here we need actual coding of received * packet as this determines pipeline delays so need to figure this out * using CI field. */ if ((phy == BLE_PHY_MODE_CODED_125KBPS) || (phy == BLE_PHY_MODE_CODED_500KBPS)) { phy = NRF_RADIO_NS->PDUSTAT & RADIO_PDUSTAT_CISTAT_Msk ? BLE_PHY_MODE_CODED_500KBPS : BLE_PHY_MODE_CODED_125KBPS; } #endif return phy; } static void ble_phy_rx_end_isr(void) { int rc; uint8_t *dptr; uint8_t crcok; uint32_t tx_time; struct ble_mbuf_hdr *ble_hdr; /* Clear events and clear interrupt */ NRF_RADIO_NS->EVENTS_END = 0; NRF_RADIO_NS->INTENCLR = RADIO_INTENCLR_END_Msk; /* Disable automatic RXEN */ NRF_RADIO_NS->SUBSCRIBE_RXEN = DPPI_SUBSCRIBE_RADIO_TASKS_RXEN(0); /* Set RSSI and CRC status flag in header */ ble_hdr = &g_ble_phy_data.rxhdr; assert(NRF_RADIO_NS->EVENTS_RSSIEND != 0); ble_hdr->rxinfo.rssi = (-1 * NRF_RADIO_NS->RSSISAMPLE) + g_ble_phy_data.rx_pwr_compensation; dptr = (uint8_t *)&g_ble_phy_rx_buf[0]; dptr += 3; /* Count PHY crc errors and valid packets */ crcok = NRF_RADIO_NS->EVENTS_CRCOK; if (!crcok) { STATS_INC(ble_phy_stats, rx_crc_err); } else { STATS_INC(ble_phy_stats, rx_valid); ble_hdr->rxinfo.flags |= BLE_MBUF_HDR_F_CRC_OK; #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION) if (g_ble_phy_data.phy_encrypted) { /* Only set MIC failure flag if frame is not zero length */ if ((dptr[1] != 0) && (NRF_CCM_NS->MICSTATUS == 0)) { ble_hdr->rxinfo.flags |= BLE_MBUF_HDR_F_MIC_FAILURE; } /* * XXX: not sure how to deal with this. This should not * be a MIC failure but we should not hand it up. I guess * this is just some form of rx error and that is how we * handle it? For now, just set CRC error flags */ if (NRF_CCM_NS->EVENTS_ERROR) { STATS_INC(ble_phy_stats, rx_hw_err); ble_hdr->rxinfo.flags &= ~BLE_MBUF_HDR_F_CRC_OK; } /* * XXX: This is a total hack work-around for now but I dont * know what else to do. If ENDCRYPT is not set and we are * encrypted we need to not trust this frame and drop it. */ if (NRF_CCM_NS->EVENTS_ENDCRYPT == 0) { STATS_INC(ble_phy_stats, rx_hw_err); ble_hdr->rxinfo.flags &= ~BLE_MBUF_HDR_F_CRC_OK; } } #endif } #if (BLE_LL_BT5_PHY_SUPPORTED == 1) ble_phy_mode_apply(g_ble_phy_data.phy_tx_phy_mode); #endif /* * Let's schedule TX now and we will just cancel it after processing RXed * packet if we don't need TX. * * We need this to initiate connection in case AUX_CONNECT_REQ was sent on * LE Coded S8. In this case the time we process RXed packet is roughly the * same as the limit when we need to have TX scheduled (i.e. TIMER0 and PPI * armed) so we may simply miss the slot and set the timer in the past. * * When TX is scheduled in advance, we may event process packet a bit longer * during radio ramp-up - this gives us extra 40 usecs which is more than * enough. */ /* Schedule TX exactly T_IFS after RX end captured in CC[2] */ tx_time = NRF_TIMER0_NS->CC[2] + BLE_LL_IFS; /* Adjust for delay between actual RX end time and EVENT_END */ tx_time -= g_ble_phy_t_rxenddelay[ble_hdr->rxinfo.phy_mode]; /* Adjust for radio ramp-up */ tx_time -= BLE_PHY_T_TXENFAST; /* Adjust for delay between EVENT_READY and actual TX start time */ tx_time -= g_ble_phy_t_txdelay[g_ble_phy_data.phy_cur_phy_mode]; NRF_TIMER0_NS->CC[0] = tx_time; NRF_TIMER0_NS->EVENTS_COMPARE[0] = 0; /* Enable automatic TX */ NRF_RADIO_NS->SUBSCRIBE_TXEN = DPPI_SUBSCRIBE_RADIO_TASKS_TXEN(1); /* * XXX: Hack warning! * * It may happen (during flash erase) that CPU is stopped for a moment and * TIMER0 already counted past CC[0]. In such case we will be stuck waiting * for TX to start since EVENTS_COMPARE[0] will not happen any time soon. * For now let's set a flag denoting that we are late in RX-TX transition so * ble_phy_tx() will fail - this allows everything to cleanup nicely without * the need for extra handling in many places. * * Note: CC[3] is used only for wfr which we do not need here. */ NRF_TIMER0_NS->TASKS_CAPTURE[3] = 1; if (NRF_TIMER0_NS->CC[3] > NRF_TIMER0_NS->CC[0]) { NRF_RADIO_NS->SUBSCRIBE_TXEN = DPPI_SUBSCRIBE_RADIO_TASKS_TXEN(0); g_ble_phy_data.phy_transition_late = 1; } /* * XXX: This is a horrible ugly hack to deal with the RAM S1 byte * that is not sent over the air but is present here. Simply move the * data pointer to deal with it. Fix this later. */ dptr[2] = dptr[1]; dptr[1] = dptr[0]; rc = ble_ll_rx_end(dptr + 1, ble_hdr); if (rc < 0) { ble_phy_disable(); } } static bool ble_phy_rx_start_isr(void) { int rc; uint32_t state; uint32_t usecs; uint32_t pdu_usecs; uint32_t ticks; struct ble_mbuf_hdr *ble_hdr; uint8_t *dptr; #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY) int adva_offset; #endif dptr = (uint8_t *)&g_ble_phy_rx_buf[0]; /* Clear events and clear interrupt */ NRF_RADIO_NS->EVENTS_ADDRESS = 0; /* Clear wfr timer channels and DISABLED interrupt */ NRF_RADIO_NS->INTENCLR = RADIO_INTENCLR_DISABLED_Msk | RADIO_INTENCLR_ADDRESS_Msk; NRF_TIMER0_NS->SUBSCRIBE_CAPTURE[3] = DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE3(0); NRF_RADIO_NS->SUBSCRIBE_DISABLE = DPPI_SUBSCRIBE_RADIO_TASKS_DISABLE(0); /* Initialize the ble mbuf header */ ble_hdr = &g_ble_phy_data.rxhdr; ble_hdr->rxinfo.flags = ble_ll_state_get(); ble_hdr->rxinfo.channel = g_ble_phy_data.phy_chan; ble_hdr->rxinfo.handle = 0; ble_hdr->rxinfo.phy = ble_phy_get_cur_phy(); ble_hdr->rxinfo.phy_mode = ble_phy_get_cur_rx_phy_mode(); #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_EXT_ADV) ble_hdr->rxinfo.user_data = NULL; #endif /* * Calculate accurate packets start time (with remainder) * * We may start receiving packet somewhere during preamble in which case * it is possible that actual transmission started before TIMER0 was * running - need to take this into account. */ ble_hdr->beg_cputime = g_ble_phy_data.phy_start_cputime; usecs = NRF_TIMER0_NS->CC[1]; pdu_usecs = ble_phy_mode_pdu_start_off(ble_hdr->rxinfo.phy_mode) + g_ble_phy_t_rxaddrdelay[ble_hdr->rxinfo.phy_mode]; if (usecs < pdu_usecs) { g_ble_phy_data.phy_start_cputime--; usecs += 30; } usecs -= pdu_usecs; ticks = os_cputime_usecs_to_ticks(usecs); usecs -= os_cputime_ticks_to_usecs(ticks); if (usecs == 31) { usecs = 0; ++ticks; } ble_hdr->beg_cputime += ticks; ble_hdr->rem_usecs = usecs; /* Wait to get 1st byte of frame */ while (1) { state = NRF_RADIO_NS->STATE; if (NRF_RADIO_NS->EVENTS_BCMATCH != 0) { break; } /* * If state is disabled, we should have the BCMATCH. If not, * something is wrong! */ if (state == RADIO_STATE_STATE_Disabled) { NRF_RADIO_NS->INTENCLR = NRF_RADIO_IRQ_MASK_ALL; NRF_RADIO_NS->SHORTS = 0; return false; } } #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY) /* * If privacy is enabled and received PDU has TxAdd bit set (i.e. random * address) we try to resolve address using AAR. */ if (g_ble_phy_data.phy_privacy && (dptr[3] & 0x40)) { /* * AdvA is located at 4th octet in RX buffer (after S0, length an S1 * fields). In case of extended advertising PDU we need to add 2 more * octets for extended header. */ adva_offset = (dptr[3] & 0x0f) == 0x07 ? 2 : 0; NRF_AAR_NS->ADDRPTR = (uint32_t)(dptr + 3 + adva_offset); /* Trigger AAR after last bit of AdvA is received */ NRF_RADIO_NS->EVENTS_BCMATCH = 0; NRF_AAR_NS->SUBSCRIBE_START = DPPI_SUBSCRIBE_AAR_TASKS_START(1); NRF_RADIO_NS->BCC = (BLE_LL_PDU_HDR_LEN + adva_offset + BLE_DEV_ADDR_LEN) * 8 + g_ble_phy_data.phy_bcc_offset; } #endif /* Call Link Layer receive start function */ rc = ble_ll_rx_start(dptr + 3, g_ble_phy_data.phy_chan, &g_ble_phy_data.rxhdr); if (rc >= 0) { /* Set rx started flag and enable rx end ISR */ g_ble_phy_data.phy_rx_started = 1; NRF_RADIO_NS->INTENSET = RADIO_INTENSET_END_Msk; } else { /* Disable PHY */ ble_phy_disable(); STATS_INC(ble_phy_stats, rx_aborts); } /* Count rx starts */ STATS_INC(ble_phy_stats, rx_starts); return true; } static void ble_phy_isr(void) { uint32_t irq_en; os_trace_isr_enter(); /* Read irq register to determine which interrupts are enabled */ irq_en = NRF_RADIO_NS->INTENCLR; /* * NOTE: order of checking is important! Possible, if things get delayed, * we have both an ADDRESS and DISABLED interrupt in rx state. If we get * an address, we disable the DISABLED interrupt. */ /* We get this if we have started to receive a frame */ if ((irq_en & RADIO_INTENCLR_ADDRESS_Msk) && NRF_RADIO_NS->EVENTS_ADDRESS) { /* * wfr timer is calculated to expire at the exact time we should start * receiving a packet (with 1 usec precision) so it is possible it will * fire at the same time as EVENT_ADDRESS. If this happens, radio will * be disabled while we are waiting for EVENT_BCCMATCH after 1st byte * of payload is received and ble_phy_rx_start_isr() will fail. In this * case we should not clear DISABLED irq mask so it will be handled as * regular radio disabled event below. In other case radio was disabled * on purpose and there's nothing more to handle so we can clear mask. */ if (ble_phy_rx_start_isr()) { irq_en &= ~RADIO_INTENCLR_DISABLED_Msk; } } /* Check for disabled event. This only happens for transmits now */ if ((irq_en & RADIO_INTENCLR_DISABLED_Msk) && NRF_RADIO_NS->EVENTS_DISABLED) { if (g_ble_phy_data.phy_state == BLE_PHY_STATE_RX) { NRF_RADIO_NS->EVENTS_DISABLED = 0; ble_ll_wfr_timer_exp(NULL); } else if (g_ble_phy_data.phy_state == BLE_PHY_STATE_IDLE) { assert(0); } else { ble_phy_tx_end_isr(); } } /* Receive packet end (we dont enable this for transmit) */ if ((irq_en & RADIO_INTENCLR_END_Msk) && NRF_RADIO_NS->EVENTS_END) { ble_phy_rx_end_isr(); } g_ble_phy_data.phy_transition_late = 0; /* Ensures IRQ is cleared */ irq_en = NRF_RADIO_NS->SHORTS; /* Count # of interrupts */ STATS_INC(ble_phy_stats, phy_isrs); os_trace_isr_exit(); } int ble_phy_init(void) { int rc; /* Default phy to use is 1M */ g_ble_phy_data.phy_cur_phy_mode = BLE_PHY_MODE_1M; g_ble_phy_data.phy_tx_phy_mode = BLE_PHY_MODE_1M; g_ble_phy_data.phy_rx_phy_mode = BLE_PHY_MODE_1M; g_ble_phy_data.rx_pwr_compensation = 0; /* Set phy channel to an invalid channel so first set channel works */ g_ble_phy_data.phy_chan = BLE_PHY_NUM_CHANS; /* Toggle peripheral power to reset (just in case) */ NRF_RADIO_NS->POWER = 0; NRF_RADIO_NS->POWER = 1; /* Errata 16 - RADIO: POWER register is not functional * Workaround: Reset all RADIO registers in firmware. */ NRF_RADIO_NS->SUBSCRIBE_TXEN = 0; NRF_RADIO_NS->SUBSCRIBE_RXEN = 0; NRF_RADIO_NS->SUBSCRIBE_DISABLE = 0; /* Disable all interrupts */ NRF_RADIO_NS->INTENCLR = NRF_RADIO_IRQ_MASK_ALL; /* Set configuration registers */ NRF_RADIO_NS->MODE = RADIO_MODE_MODE_Ble_1Mbit; NRF_RADIO_NS->PCNF0 = NRF_PCNF0; /* XXX: should maxlen be 251 for encryption? */ NRF_RADIO_NS->PCNF1 = NRF_MAXLEN | (RADIO_PCNF1_ENDIAN_Little << RADIO_PCNF1_ENDIAN_Pos) | (NRF_BALEN << RADIO_PCNF1_BALEN_Pos) | RADIO_PCNF1_WHITEEN_Msk; /* Enable radio fast ramp-up */ NRF_RADIO_NS->MODECNF0 |= (RADIO_MODECNF0_RU_Fast << RADIO_MODECNF0_RU_Pos) & RADIO_MODECNF0_RU_Msk; /* Set logical address 1 for TX and RX */ NRF_RADIO_NS->TXADDRESS = 0; NRF_RADIO_NS->RXADDRESSES = (1 << 0); /* Configure the CRC registers */ NRF_RADIO_NS->CRCCNF = (RADIO_CRCCNF_SKIPADDR_Skip << RADIO_CRCCNF_SKIPADDR_Pos) | RADIO_CRCCNF_LEN_Three; /* Configure BLE poly */ NRF_RADIO_NS->CRCPOLY = 0x0000065B; /* Configure IFS */ NRF_RADIO_NS->TIFS = BLE_LL_IFS; #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION) NRF_CCM_NS->INTENCLR = 0xffffffff; NRF_CCM_NS->SHORTS = CCM_SHORTS_ENDKSGEN_CRYPT_Msk; NRF_CCM_NS->EVENTS_ERROR = 0; memset(nrf_encrypt_scratchpad, 0, sizeof(nrf_encrypt_scratchpad)); #endif #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY) g_ble_phy_data.phy_aar_scratch = 0; NRF_AAR_NS->IRKPTR = (uint32_t)&g_nrf_irk_list[0]; NRF_AAR_NS->INTENCLR = 0xffffffff; NRF_AAR_NS->EVENTS_END = 0; NRF_AAR_NS->EVENTS_RESOLVED = 0; NRF_AAR_NS->EVENTS_NOTRESOLVED = 0; NRF_AAR_NS->NIRK = 0; #endif /* TIMER0 setup for PHY when using RTC */ NRF_TIMER0_NS->TASKS_STOP = 1; NRF_TIMER0_NS->TASKS_SHUTDOWN = 1; NRF_TIMER0_NS->BITMODE = 3; /* 32-bit timer */ NRF_TIMER0_NS->MODE = 0; /* Timer mode */ NRF_TIMER0_NS->PRESCALER = 4; /* gives us 1 MHz */ /* Publish events */ NRF_TIMER0_NS->PUBLISH_COMPARE[0] = DPPI_PUBLISH_TIMER0_EVENTS_COMPARE_0; NRF_TIMER0_NS->PUBLISH_COMPARE[3] = DPPI_PUBLISH_TIMER0_EVENTS_COMPARE_3; NRF_RADIO_NS->PUBLISH_END = DPPI_PUBLISH_RADIO_EVENTS_END; NRF_RADIO_NS->PUBLISH_BCMATCH = DPPI_PUBLISH_RADIO_EVENTS_BCMATCH; NRF_RADIO_NS->PUBLISH_ADDRESS = DPPI_PUBLISH_RADIO_EVENTS_ADDRESS; NRF_RTC0_NS->PUBLISH_COMPARE[0] = DPPI_PUBLISH_RTC0_EVENTS_COMPARE_0; /* Enable channels we publish on */ NRF_DPPIC_NS->CHENSET = DPPI_CH_ENABLE_ALL; /* Captures tx/rx start in timer0 cc 1 and tx/rx end in timer0 cc 2 */ NRF_TIMER0_NS->SUBSCRIBE_CAPTURE[1] = DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE1(1); NRF_TIMER0_NS->SUBSCRIBE_CAPTURE[2] = DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE2(1); /* Set isr in vector table and enable interrupt */ #ifndef RIOT_VERSION NVIC_SetPriority(RADIO_IRQn, 0); #endif #if MYNEWT NVIC_SetVector(RADIO_IRQn, (uint32_t)ble_phy_isr); #else ble_npl_hw_set_isr(RADIO_IRQn, ble_phy_isr); #endif NVIC_EnableIRQ(RADIO_IRQn); /* Register phy statistics */ if (!g_ble_phy_data.phy_stats_initialized) { rc = stats_init_and_reg(STATS_HDR(ble_phy_stats), STATS_SIZE_INIT_PARMS(ble_phy_stats, STATS_SIZE_32), STATS_NAME_INIT_PARMS(ble_phy_stats), "ble_phy"); assert(rc == 0); g_ble_phy_data.phy_stats_initialized = 1; } return 0; } int ble_phy_rx(void) { /* * Check radio state. * * In case radio is now disabling we'll wait for it to finish, but if for * any reason it's just in idle state we proceed with RX as usual since * nRF52 radio can ramp-up from idle state as well. * * Note that TX and RX states values are the same except for 3rd bit so we * can make a shortcut here when checking for idle state. */ nrf_wait_disabled(); if ((NRF_RADIO_NS->STATE != RADIO_STATE_STATE_Disabled) && ((NRF_RADIO_NS->STATE & 0x07) != RADIO_STATE_STATE_RxIdle)) { ble_phy_disable(); STATS_INC(ble_phy_stats, radio_state_errs); return BLE_PHY_ERR_RADIO_STATE; } /* Make sure all interrupts are disabled */ NRF_RADIO_NS->INTENCLR = NRF_RADIO_IRQ_MASK_ALL; /* Clear events prior to enabling receive */ NRF_RADIO_NS->EVENTS_END = 0; NRF_RADIO_NS->EVENTS_DISABLED = 0; /* Setup for rx */ ble_phy_rx_xcvr_setup(); /* task to start RX should be subscribed here */ assert(NRF_RADIO_NS->SUBSCRIBE_RXEN & DPPI_SUBSCRIBE_RADIO_TASKS_RXEN(1)); return 0; } #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION) void ble_phy_encrypt_enable(uint64_t pkt_counter, uint8_t *iv, uint8_t *key, uint8_t is_master) { memcpy(nrf_ccm_data.key, key, 16); nrf_ccm_data.pkt_counter = pkt_counter; memcpy(nrf_ccm_data.iv, iv, 8); nrf_ccm_data.dir_bit = is_master; g_ble_phy_data.phy_encrypted = 1; /* Enable the module (AAR cannot be on while CCM on) */ NRF_AAR_NS->ENABLE = AAR_ENABLE_ENABLE_Disabled; NRF_CCM_NS->ENABLE = CCM_ENABLE_ENABLE_Enabled; } void ble_phy_encrypt_set_pkt_cntr(uint64_t pkt_counter, int dir) { nrf_ccm_data.pkt_counter = pkt_counter; nrf_ccm_data.dir_bit = dir; } void ble_phy_encrypt_disable(void) { NRF_CCM_NS->SUBSCRIBE_CRYPT = DPPI_SUBSCRIBE_CCM_TASKS_CRYPT(0); NRF_CCM_NS->TASKS_STOP = 1; NRF_CCM_NS->EVENTS_ERROR = 0; NRF_CCM_NS->ENABLE = CCM_ENABLE_ENABLE_Disabled; g_ble_phy_data.phy_encrypted = 0; } #endif void ble_phy_set_txend_cb(ble_phy_tx_end_func txend_cb, void *arg) { /* Set transmit end callback and arg */ g_ble_phy_data.txend_cb = txend_cb; g_ble_phy_data.txend_arg = arg; } int ble_phy_tx_set_start_time(uint32_t cputime, uint8_t rem_usecs) { int rc; ble_phy_trace_u32x2(BLE_PHY_TRACE_ID_START_TX, cputime, rem_usecs); #if (BLE_LL_BT5_PHY_SUPPORTED == 1) ble_phy_mode_apply(g_ble_phy_data.phy_tx_phy_mode); #endif /* XXX: This should not be necessary, but paranoia is good! */ /* Clear timer0 compare to RXEN since we are transmitting */ NRF_RADIO_NS->SUBSCRIBE_RXEN = DPPI_SUBSCRIBE_RADIO_TASKS_RXEN(0); if (ble_phy_set_start_time(cputime, rem_usecs, true) != 0) { STATS_INC(ble_phy_stats, tx_late); ble_phy_disable(); rc = BLE_PHY_ERR_TX_LATE; } else { /* Enable PPI to automatically start TXEN */ NRF_RADIO_NS->SUBSCRIBE_TXEN = DPPI_SUBSCRIBE_RADIO_TASKS_TXEN(1); rc = 0; } return rc; } int ble_phy_rx_set_start_time(uint32_t cputime, uint8_t rem_usecs) { bool late = false; int rc = 0; ble_phy_trace_u32x2(BLE_PHY_TRACE_ID_START_RX, cputime, rem_usecs); #if (BLE_LL_BT5_PHY_SUPPORTED == 1) ble_phy_mode_apply(g_ble_phy_data.phy_rx_phy_mode); #endif /* XXX: This should not be necessary, but paranoia is good! */ /* Clear timer0 compare to TXEN since we are transmitting */ NRF_RADIO_NS->SUBSCRIBE_TXEN = DPPI_SUBSCRIBE_RADIO_TASKS_TXEN(0); if (ble_phy_set_start_time(cputime, rem_usecs, false) != 0) { STATS_INC(ble_phy_stats, rx_late); /* We're late so let's just try to start RX as soon as possible */ ble_phy_set_start_now(); late = true; } /* Enable PPI to automatically start RXEN */ NRF_RADIO_NS->SUBSCRIBE_RXEN = DPPI_SUBSCRIBE_RADIO_TASKS_RXEN(1); /* Start rx */ rc = ble_phy_rx(); /* * If we enabled receiver but were late, let's return proper error code so * caller can handle this. */ if (!rc && late) { rc = BLE_PHY_ERR_RX_LATE; } return rc; } int ble_phy_tx(ble_phy_tx_pducb_t pducb, void *pducb_arg, uint8_t end_trans) { int rc; uint8_t *dptr; uint8_t *pktptr; uint8_t payload_len; uint8_t hdr_byte; uint32_t state; uint32_t shortcuts; if (g_ble_phy_data.phy_transition_late) { ble_phy_disable(); STATS_INC(ble_phy_stats, tx_late); return BLE_PHY_ERR_TX_LATE; } /* * This check is to make sure that the radio is not in a state where * it is moving to disabled state. If so, let it get there. */ nrf_wait_disabled(); /* * XXX: Although we may not have to do this here, I clear all the PPI * that should not be used when transmitting. Some of them are only enabled * if encryption and/or privacy is on, but I dont care. Better to be * paranoid, and if you are going to clear one, might as well clear them * all. */ NRF_TIMER0_NS->SUBSCRIBE_CAPTURE[3] = DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE3(0); NRF_RADIO_NS->SUBSCRIBE_DISABLE = DPPI_SUBSCRIBE_RADIO_TASKS_DISABLE(0); NRF_AAR_NS->SUBSCRIBE_START = DPPI_SUBSCRIBE_AAR_TASKS_START(0); NRF_CCM_NS->SUBSCRIBE_CRYPT = DPPI_SUBSCRIBE_CCM_TASKS_CRYPT(0); #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION) if (g_ble_phy_data.phy_encrypted) { dptr = (uint8_t *)&g_ble_phy_enc_buf[0]; pktptr = (uint8_t *)&g_ble_phy_tx_buf[0]; NRF_CCM_NS->SHORTS = CCM_SHORTS_ENDKSGEN_CRYPT_Msk; NRF_CCM_NS->INPTR = (uint32_t)dptr; NRF_CCM_NS->OUTPTR = (uint32_t)pktptr; NRF_CCM_NS->SCRATCHPTR = (uint32_t)&nrf_encrypt_scratchpad[0]; NRF_CCM_NS->EVENTS_ERROR = 0; NRF_CCM_NS->MODE = CCM_MODE_LENGTH_Msk | ble_phy_get_ccm_datarate(); NRF_CCM_NS->CNFPTR = (uint32_t)&nrf_ccm_data; } else { #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY) NRF_AAR_NS->IRKPTR = (uint32_t)&g_nrf_irk_list[0]; #endif dptr = (uint8_t *)&g_ble_phy_tx_buf[0]; pktptr = dptr; } #else dptr = (uint8_t *)&g_ble_phy_tx_buf[0]; pktptr = dptr; #endif /* Set PDU payload */ payload_len = pducb(&dptr[3], pducb_arg, &hdr_byte); /* RAM representation has S0, LENGTH and S1 fields. (3 bytes) */ dptr[0] = hdr_byte; dptr[1] = payload_len; dptr[2] = 0; #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LE_ENCRYPTION) /* Start key-stream generation and encryption (via short) */ if (g_ble_phy_data.phy_encrypted) { NRF_CCM_NS->TASKS_KSGEN = 1; } #endif NRF_RADIO_NS->PACKETPTR = (uint32_t)pktptr; /* Clear the ready, end and disabled events */ NRF_RADIO_NS->EVENTS_READY = 0; NRF_RADIO_NS->EVENTS_END = 0; NRF_RADIO_NS->EVENTS_DISABLED = 0; /* Enable shortcuts for transmit start/end. */ shortcuts = RADIO_SHORTS_END_DISABLE_Msk | RADIO_SHORTS_READY_START_Msk; NRF_RADIO_NS->SHORTS = shortcuts; NRF_RADIO_NS->INTENSET = RADIO_INTENSET_DISABLED_Msk; /* Set the PHY transition */ g_ble_phy_data.phy_transition = end_trans; /* Set transmitted payload length */ g_ble_phy_data.phy_tx_pyld_len = payload_len; /* If we already started transmitting, abort it! */ state = NRF_RADIO_NS->STATE; if (state != RADIO_STATE_STATE_Tx) { /* Set phy state to transmitting and count packet statistics */ g_ble_phy_data.phy_state = BLE_PHY_STATE_TX; STATS_INC(ble_phy_stats, tx_good); STATS_INCN(ble_phy_stats, tx_bytes, payload_len + BLE_LL_PDU_HDR_LEN); rc = BLE_ERR_SUCCESS; } else { ble_phy_disable(); STATS_INC(ble_phy_stats, tx_late); rc = BLE_PHY_ERR_RADIO_STATE; } return rc; } int ble_phy_txpwr_set(int dbm) { /* "Rail" power level if outside supported range */ dbm = ble_phy_txpower_round(dbm); NRF_RADIO_NS->TXPOWER = dbm; g_ble_phy_data.phy_txpwr_dbm = dbm; return 0; } int ble_phy_txpower_round(int dbm) { /* "Rail" power level if outside supported range */ if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_0dBm) { return (int8_t)RADIO_TXPOWER_TXPOWER_0dBm; } if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg1dBm) { return (int8_t)RADIO_TXPOWER_TXPOWER_Neg1dBm; } if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg2dBm) { return (int8_t)RADIO_TXPOWER_TXPOWER_Neg2dBm; } if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg3dBm) { return (int8_t)RADIO_TXPOWER_TXPOWER_Neg4dBm; } if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg4dBm) { return (int8_t)RADIO_TXPOWER_TXPOWER_Neg4dBm; } if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg5dBm) { return (int8_t)RADIO_TXPOWER_TXPOWER_Neg5dBm; } if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg6dBm) { return (int8_t)RADIO_TXPOWER_TXPOWER_Neg6dBm; } if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg7dBm) { return (int8_t)RADIO_TXPOWER_TXPOWER_Neg7dBm; } if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg8dBm) { return (int8_t)RADIO_TXPOWER_TXPOWER_Neg8dBm; } if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg12dBm) { return (int8_t)RADIO_TXPOWER_TXPOWER_Neg12dBm; } if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg16dBm) { return (int8_t)RADIO_TXPOWER_TXPOWER_Neg16dBm; } if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg20dBm) { return (int8_t)RADIO_TXPOWER_TXPOWER_Neg20dBm; } if (dbm >= (int8_t)RADIO_TXPOWER_TXPOWER_Neg40dBm) { return (int8_t)RADIO_TXPOWER_TXPOWER_Neg40dBm; } return (int8_t)RADIO_TXPOWER_TXPOWER_Neg40dBm; } static int ble_phy_set_access_addr(uint32_t access_addr) { NRF_RADIO_NS->BASE0 = (access_addr << 8); NRF_RADIO_NS->PREFIX0 = (NRF_RADIO_NS->PREFIX0 & 0xFFFFFF00) | (access_addr >> 24); g_ble_phy_data.phy_access_address = access_addr; return 0; } int ble_phy_txpwr_get(void) { return g_ble_phy_data.phy_txpwr_dbm; } void ble_phy_set_rx_pwr_compensation(int8_t compensation) { g_ble_phy_data.rx_pwr_compensation = compensation; } int ble_phy_setchan(uint8_t chan, uint32_t access_addr, uint32_t crcinit) { assert(chan < BLE_PHY_NUM_CHANS); /* Check for valid channel range */ if (chan >= BLE_PHY_NUM_CHANS) { return BLE_PHY_ERR_INV_PARAM; } /* Set current access address */ ble_phy_set_access_addr(access_addr); /* Configure crcinit */ NRF_RADIO_NS->CRCINIT = crcinit; /* Set the frequency and the data whitening initial value */ g_ble_phy_data.phy_chan = chan; NRF_RADIO_NS->FREQUENCY = g_ble_phy_chan_freq[chan]; NRF_RADIO_NS->DATAWHITEIV = chan; return 0; } /** * Stop the timer used to count microseconds when using RTC for cputime */ static void ble_phy_stop_usec_timer(void) { NRF_TIMER0_NS->TASKS_STOP = 1; NRF_TIMER0_NS->TASKS_SHUTDOWN = 1; NRF_RTC0_NS->EVTENCLR = RTC_EVTENSET_COMPARE0_Msk; } /** * ble phy disable irq and ppi * * This routine is to be called when reception was stopped due to either a * wait for response timeout or a packet being received and the phy is to be * restarted in receive mode. Generally, the disable routine is called to stop * the phy. */ static void ble_phy_disable_irq_and_ppi(void) { NRF_RADIO_NS->INTENCLR = NRF_RADIO_IRQ_MASK_ALL; NRF_RADIO_NS->SHORTS = 0; NRF_RADIO_NS->TASKS_DISABLE = 1; NRF_TIMER0_NS->SUBSCRIBE_START = DPPI_SUBSCRIBE_TIMER0_TASKS_START(0); NRF_TIMER0_NS->SUBSCRIBE_CAPTURE[3] = DPPI_SUBSCRIBE_TIMER0_TASKS_CAPTURE3(0); NRF_RADIO_NS->SUBSCRIBE_DISABLE = DPPI_SUBSCRIBE_RADIO_TASKS_DISABLE(0); NRF_RADIO_NS->SUBSCRIBE_TXEN = DPPI_SUBSCRIBE_RADIO_TASKS_TXEN(0); NRF_RADIO_NS->SUBSCRIBE_RXEN = DPPI_SUBSCRIBE_RADIO_TASKS_RXEN(0); NRF_AAR_NS->SUBSCRIBE_START = DPPI_SUBSCRIBE_AAR_TASKS_START(0); NRF_CCM_NS->SUBSCRIBE_CRYPT = DPPI_SUBSCRIBE_CCM_TASKS_CRYPT(0); NVIC_ClearPendingIRQ(RADIO_IRQn); g_ble_phy_data.phy_state = BLE_PHY_STATE_IDLE; } void ble_phy_restart_rx(void) { ble_phy_stop_usec_timer(); ble_phy_disable_irq_and_ppi(); ble_phy_set_start_now(); /* Enable PPI to automatically start RXEN */ NRF_RADIO_NS->SUBSCRIBE_RXEN = DPPI_SUBSCRIBE_RADIO_TASKS_RXEN(1); ble_phy_rx(); } void ble_phy_disable(void) { ble_phy_trace_void(BLE_PHY_TRACE_ID_DISABLE); ble_phy_stop_usec_timer(); ble_phy_disable_irq_and_ppi(); } uint32_t ble_phy_access_addr_get(void) { return g_ble_phy_data.phy_access_address; } int ble_phy_state_get(void) { return g_ble_phy_data.phy_state; } int ble_phy_rx_started(void) { return g_ble_phy_data.phy_rx_started; } uint8_t ble_phy_xcvr_state_get(void) { uint32_t state; state = NRF_RADIO_NS->STATE; return (uint8_t)state; } uint8_t ble_phy_max_data_pdu_pyld(void) { return BLE_LL_DATA_PDU_MAX_PYLD; } #if MYNEWT_VAL(BLE_LL_CFG_FEAT_LL_PRIVACY) void ble_phy_resolv_list_enable(void) { NRF_AAR_NS->NIRK = (uint32_t)g_nrf_num_irks; g_ble_phy_data.phy_privacy = 1; } void ble_phy_resolv_list_disable(void) { g_ble_phy_data.phy_privacy = 0; } #endif #if MYNEWT_VAL(BLE_LL_DTM) void ble_phy_enable_dtm(void) { /* When DTM is enabled we need to disable whitening as per * Bluetooth v5.0 Vol 6. Part F. 4.1.1 */ NRF_RADIO_NS->PCNF1 &= ~RADIO_PCNF1_WHITEEN_Msk; } void ble_phy_disable_dtm(void) { /* Enable whitening */ NRF_RADIO_NS->PCNF1 |= RADIO_PCNF1_WHITEEN_Msk; } #endif void ble_phy_rfclk_enable(void) { #if MYNEWT nrf5340_net_clock_hfxo_request(); #else NRF_CLOCK_NS->TASKS_HFCLKSTART = 1; #endif } void ble_phy_rfclk_disable(void) { #if MYNEWT nrf5340_net_clock_hfxo_release(); #else NRF_CLOCK_NS->TASKS_HFCLKSTOP = 1; #endif } |